(47-5) 16 * << * >> * Russian * English * Content * All Issues

Nonparametric estimation of the number of classes with different average brightness in thermal images
A.N. Galyntich 1,2, M.A. Raifeld 2

Branch of JSC "PO UOMZ Ural-SibNIIRS", 630082, Russia, Novosibirsk, st. D. Kovalchuk 179/2;
Novosibirsk State Technical University, 630073, Russia, Novosibirsk, K. Marksa Ave. 20

 PDF, 1210 kB

DOI: 10.18287/2412-6179-CO-1284

Pages: 816-823.

Full text of article: Russian language.

Abstract:
When there is no information about the number of brightness classes, synthesizing algorithms for automatic image threshold segmentation involves a problem of determining the number of thresholds. The solution to the problem of estimating the number of classes in an image can be based on representing its distribution as a mixture of distributions of brightness classes when priori probabilities are unknown, or estimating the number of histogram modes. At the same time, it is known that the mixture splitting problem has a solution only for certain types of distributions and the histogram modes are not always distinguishable. In the general case, when the distributions of brightness classes are unknown, there are difficulties in applying these methods. The article proposes a non-parametric approach to determining the number of classes that differ in average brightness, based on rank histograms and using the property of local spatial grouping of elements of each brightness class in the image.

Keywords:
image segmentation, nonparametric algorithm, rank histogram, eigenvalues, Gram-Schmidt orthogonalization, principal component method.

Citation:
Galyntich AN, Raifeld MA. Nonparametric estimation of the number of classes with different average brightness in thermal images. Computer Optics 2023; 47(5): 816-823. DOI: 10.18287/2412-6179-CO-1284.

References:

  1. Chochia PA. Image segmentation based on analysis of distances in feature space. Optoelectron Instrum Data Process 2015; 50(6): 613-624. DOI: 10.3103/S8756699014060107.
  2. Aivazyan SA, Buchstaber VM, Yenyukov IS, Meshalkin LD. Applied statistics: classification and reduction of dimensionality. Moscow: “Finansy i Statistica” Publisher; 1989. ISBN: 5-297-00054-X.
  3. Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 2004, 13(1): 146-168. DOI: 10.1117/1.1631315.
  4. Kittler J, Illingworth J. Minimum error thresholding. Pattern Recogn 1986, 19(1): 41-47. DOI: 10.1016/0031-3203(86)90030-0.
  5. Devijver PA, Kittler J. Pattern recognition: A statistical approach. Englewood Cliffs, NJ: Prentice Hall; 1982.
  6. Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr 1974, 6(1): 716-723. DOI: 10.1109/TAC.1974.1100705.
  7. Schwarz G. Estimating the dimension of a model. Annals of Statistics 1978, 6(2): 461-464. DOI: 10.1214/AOS/1176344136.
  8. Podrezov RV, Raifeld MA. Nonparametric method of estimating number of classes in image segmentation. Optoelectron Instrum Data Process 2020; 56(3): 280-287.
  9. Andrukovich PF. Application of the principal component method in practical research. Moscow: “Izdatel'stvo moskovskogo universiteta” Publisher; 1973.
  10. James AT. The distribution of the latent roots of the covariance matrix. Ann Math Statist 1960; 31(1): 151-158. DOI: 10.1214/aoms/1177705994.
  11. Anderson GA. An asymptotic expansion for the distribution of the latent roots of the estimated covariance matrix. Ann Math Statist 1965; 36(4): 1153-1173. DOI: 10.1214/aoms/1177699989.
  12. Kim J-O, Mueller CW. Factor analysis: Statistical methods and practical issues. Newbury Park, CA: Sage Publications Inc; 1978. ISBN: 978-0-8039-1166-6.
  13. Cangelosi R, Goriely A. Component retention in principal component analysis with application to cDNA microarray data. Biology Direct 2007; 2: 2.
  14. Akaike H. A Bayesian analysis of the minimum AIC procedure. Ann Inst Statist Math 1978; 30(A): 9-14. DOI: 10.1007/BF02480194.
  15. Korolev VY. EM-algorithm, its modifications and their application to the problem of separation of mixtures of probability distributions. Moscow: IPI RAN Publisher; 2007.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20