(47-6) 18 * << * >> * Russian * English * Content * All Issues

Development of a multi-object tracking algorithm with untrained features of object matching
V.A. Gorbachev 1, V.F. Kalugin 1

State Research Institute of Aviation Systems,
125167, Moscow, Russia, Viktorenko str. 7

 PDF, 2530 kB

DOI: 10.18287/2412-6179-CO-1275

Pages: 1002-1010.

Full text of article: Russian language.

Abstract:
The problem of multiple object tracking is one of the most difficult tasks in computer vision. The article is devoted to a task of multiple object tracking on video footage received from an unmanned aerial vehicle. Unlike a static camera platform, the mobile platform causes an accidental camera movement, which leads to sudden changes in the position, angle and scale of objects. Such aspects considerably hinder efficient object tracking. In this paper, we explore the possibilities of improving the tracking quality in the case of camera movements. We significantly outperform ByteTrack algorithm, one of the best tracking algorithms for the MOT Challenge dataset, on the Visdrone 2019 dataset.

Keywords:
multiple object tracking, YOLO v5, ByteTrack, Kalman filter, Visdrone 2019, UAV.

Citation:
Gorbachev VA, Kalugin VF. Development of a multi-object tracking algorithm with untrained features of object matching. Computer Optics 2023; 47(6): 1002-1010. DOI: 10.18287/2412-6179-CO-1275.

References:

  1. Bewley A, Ge Z, Ott L, Ramos F, Upcroft B. Simple online and realtime tracking. 2016 IEEE Int Conf on Image Processing (ICIP) 2016: 3464-3468.
  2. Zhang Y, Sun P, Jiang Y, Yu D, Yuan Z, Luo P, Liu W, Wang X. Bytetrack: Multi-object tracking by associating every detection box. arXiv Preprint. 2021. Source: <https://arxiv.org/abs/2110.06864>.
  3. Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep association metric. 2017 IEEE Int Conf on Image Processing (ICIP) 2017: 3645-3649.
  4. Zhang Y, Wang C, Wang X, Zeng W, Liu W. FairMOT: On the fairness of detection and re-identification in multiple object tracking. Int J Comput Vis 2021; 129(11): 3069-3087.
  5. Stadler D, Beyerer J. Modelling ambiguous assignments for multi-person tracking in crowds. Proc IEEE/CVF Winter Conf on Applications of Computer Vision 2022: 133-142.
  6. Du Y, Song Y, Yang B, Zhao Y. StrongSORT: Make DeepSORT great again. arXiv Preprint. 2022. Source: <https://arxiv.org/abs/2202.13514>.
  7. Sun P, Jiang Y, Zhang R, Xie E, Cao J, Hu X, Kong T, Yuan Z, Wang C, Luo P. TransTrack: Multiple-object tracking with transformer. arXiv Preprint. 2020. Source: <https://arxiv.org/abs/2012.15460>.
  8. Zheng L, Tang M, Chen Y, Zhu G, Wang J, Lu H. Improving multiple object tracking with single object tracking. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition 2021: 2453-2462.
  9. Cao J, Pang J, Weng X, Khirodkar R, Kitani K. Observation-centric SORT: Rethinking SORT for robust multi-object tracking. arXiv Preprint. 2022. Source: <https://arxiv.org/abs/2203.14360>.
  10. Bergmann P, Meinhardt T, Leal-Taixe L. Tracking without bells and whistles. 2019 IEEE/CVF Int Conf on Computer Vision (ICCV) 2019: 941-951.
  11. Yan B, Jiang Y, Sun P, Wang D, Yuan Z, Luo P, Lu H. Towards grand unification of object tracking. European Conf on Computer Vision 2022: 733-751.
  12. Milan A, Leal-Taixe L, Reid I, Roth S, Schindler K. MOT16: A benchmark for multi-object tracking. arXiv Preprint. 2016. Source: <https://arxiv.org/abs/1603.00831>.
  13. Brown RG, Hwang PYC. Introduction to random signals and applied kalman filtering: with MATLAB exercises and solutions. 3rd ed. New York, NY: Wiley; 1997.
  14. Du Y, Wan J, Zhao Y, Zhang B, Tong Z, Dong J. GIAOTracker: A comprehensive framework for MCMOT with global information and optimizing strategies in VisDrone 2021. Proc IEEE/CVF Int Conf on Computer Vision 2021: 2809-2819.
  15. Evangelidis GD, Psarakis EZ. Parametric image alignment using enhanced correlation coefficient maximization. IEEE Trans Pattern Anal Mach Intell 2008; 30(10): 1858-1865.
  16. Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. NIPS'15: Proc 28th Int Conf on Neural Information Processing Systems 2015; 1: 91-99.
  17. Duan K, Bai S, Xie L, Qi H, Huang Q, Tian Q. CenterNet: Keypoint triplets for object detection. 2019 IEEE/CVF Int Conf on Computer Vision (ICCV) 2019: 6568-6577.
  18. Glenn J. YOLOv5 release v6.1. 2022. Source: <https://github.com/ultralytics/yolov5/releases/tag/v6.1>.
  19. Aharon N, Orfaig R, Bobrovsky B-Z. BoT-SORT: Robust associations multi-pedestrian tracking. arXiv Preprint. 2022. Source: <https://arxiv.org/abs/2206.14651>.
  20. Kuhn HW. The hungarian method for the assignment problem. Nav Res Logist Q 1955; 2(1-2): 83-97.
  21. Rublee E, Rabaud V, Konolige K, Bradski G. ORB: An efficient alternative to SIFT or SURF. 2011 Int Conf on Computer Vision 2011: 2564-2571.
  22. Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vis 2004; 60(2): 91-110.
  23. Fischler MA, Bolles RC. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Comm ACM 1981; 24(6): 381-395.
  24. Rezatofighi H, Tsoi N, Gwak JY, Sadeghian A, Reid I, Savarese S. Generalized intersection over union: A metric and a loss for bounding box regression. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition (CVPR) 2019: 658-666.
  25. Bose B, Wang X, Grimson E. Multi-class object tracking algorithm that handles fragmentation and grouping. 2007 IEEE Conference on Computer Vision and Pattern Recognition 2007: .
  26. Shen Y, Hu W, Liu J, Yang M, Wei B, Chou CT. Efficient background subtraction for real-time tracking in embedded camera networks. SenSys '12: Proc 10th ACM Conf on Embedded Network Sensor Systems 2012: 295-308. DOI: 10.1145/2426656.2426686.
  27. Mahalanobis P. On the generalized distance in statistics. Proc Nat Inst Sci India 1936; 2: 49-55.
  28. Bernardin K, Stiefelhagen R. Evaluating multiple ob ject tracking performance: the clear mot metrics. EURASIP J Image Video Process 2008; 2008: 246309.
  29. Ristani E, Solera F, Zou R, Cucchiara R, Tomasi C. Performance measures and a data set for multi-target, multi camera tracking. European Conf on Computer Vision 2016: 17-35.
  30. Dendorfer P, et al. MOTChallenge: A benchmark for single-camera multiple target tracking. Int J Comput Vis 2021; 129(4): 845-881.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20