(48-1) 04 * << * >> * Russian * English * Content * All Issues

Control of giant orbital angular momentum bursts of structured Laguerre-Gaussian beams in a medium with general astigmatism
A.V. Volyar 1, E.G. Abramochkin 2, M.V. Bretsko 1, S.I. Khalilov 1, Ya.E. Akimova 1

Physics and Technology Institute of V.I. Vernadsky Crimean Federal University,
295007, Simferopol, Republic of Crimea, Russia, Academician Vernadsky 4;
Lebedev Physical Institute,
443034, Samara, Russia, Novo-Sadovaya 221

 PDF, 2212 kB

DOI: 10.18287/2412-6179-CO-1395

Pages: 35-46.

Full text of article: Russian language.

Abstract:
We examined theoretically and experimentally the influence of astigmatic elements (for example, a cylindrical lens) on a structured Laguerre-Gaussian beam (sLG) when the lens axes are directed at an arbitrary angle to the laboratory coordinate axes (a general astigmatism). Although a structurally stable Laguerre-Gaussian (LG) beam contains a great number of axisymmetric modes (in the LG basis) with matching phases and amplitudes, their superposition already loses its original axial symmetry, but acquires new properties (for example, fast oscillations of the orbital angular momentum (OAM)), while the beam OAM cannot exceed the azimuthal number l of the original LG mode. The loss of axial symmetry occurs due to bringing phase and amplitude perturbations into each mode of the sLG beam, which destroy the ring dislocations. Since degenerate ring dislocations are formed by optical vortices with opposite topological charges, but with equal weights, their destruction is accompanied by appearing of vortex pairs in the form of topological dipoles (their number is equal to the radial number n). As a result, the mode spectrum of the sLG is extended to the value ±(2n + l). The astigmatic element (cylindrical lens) violates the equality of vortex weights in the dipoles, which leads to a sharp growing the OAM of the sLG beam. Moreover, the OAM can be controlled by changing the rotation of the cylindrical lens axes and the control parameters of the sLG beam. It is these processes that are discussed in detail in our article, both in theoretical and experimental aspects. We show that with a certain orientation of the cylindrical lens axes, the beam OAM can exceed the sum of the orbital and azimuthal numbers (OAM > n + l). Besides, we reveal that the intensity pattern of the astigmatic sLG beam can follow the rotation of the astigmatic element axes (the effect of the beam structure following the cylindrical lens axes) at certain relations between control parameters of the sLG beam and the astigmatic element.

Keywords:
vortex beams, structured light, orbital angular momentum.

Citation:
Volyar AV, Abramochkin EG, Bretsko MV, Khalilov SI, Akimova YE. Control of giant orbital angular momentum bursts of structured Laguerre-Gaussian beams in a medium with general astigmatism. Computer Optics 2024; 48(1): 35-46. DOI: 10.18287/2412-6179-CO-1395.

Acknowledgements:
This work was financially supported by the Russian Science Foundation under grant No. 23-22-00314.

References:

  1. Willner AE, Song H, Zou K, Zhou H, Su X. Orbital angular momentum beams for high-capacity communications. J Lightwave Technol 2023; 41(7): 1918-1933. DOI: 10.1109/JLT.2022.3230585.
  2. Rubinsztein-Dunlop H, Forbes A, Berry MV, Dennis MR, Andrews DL, Mansuripur M, Denz C, Alpmann C, Banzer P, Bauer T, Karimi E, Marrucci L, Padgett M, Ritsch-Marte M, Litchinitser NM, Bigelow NP, Rosales-Guzmán C, Belmonte A, Torres JP, Neely TW, Baker M, Gordon R, Stilgoe AB, Romero J, White AG, Fickler R, Willner AE, Xie G, McMorran B, Weiner AM. Roadmap on structured light. J Opt 2017; 19: 013001. DOI: 10.1088/2040-8978/19/1/013001.
  3. Shen Y, Yang X, Naidoo D, Fu X, Forbes A. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser. Optica 2020; 7(7): 820-831. DOI: 10.1364/OPTICA.382994.
  4. Kotlyar VV, Kovalev AA, Porfirev AP. Vortex laser beams. Boca Raton: CRC Press; 2019. ISBN: 978-1-1385-4211-2.
  5. Wang Z, Shen Y, Naidoo D, Fu X, Forbes A. Astigmatic hybrid SU(2) vector vortex beams: towards versatile structures in longitudinally variant polarized optics. Opt Express 2021; 29(1): 315-329. DOI: 10.1364/OE.414674.
  6. He C, Shen Y, Forbes A. Towards higher-dimensional structured light. Light Sci Appl 2022; 11: 205. DOI: 10.1038/s41377-022-00897-3.
  7. Wan Z, Wang Z, Yang X, Shen Y, Fu X. Digitally tailoring arbitrary structured light of generalized ray-wave duality. Opt Express 2020; 28(21): 31043-31056. DOI: 10.1364/OE.400587.
  8. Singh K, Buono W, Forbes A, Dudley A. Accelerating polarization structures in vectorial fields. Opt Express 2021; 29(2): 2727-2737. DOI: 10.1364/OE.411029.
  9. Scholes S, Kara R, Pinnell J, Rodriguez-Fajardo V, Forbes A. Structured light with digital micro-mirror devices: a guide to best practice. Opt Eng 2019; 59(4): 041202. DOI: 10.1117/1.OE.59.4.041202.
  10. De Oliviera M, Nape I, Pinnell J, Tabebordbar N, Forbes A. Experimental high-dimensional quantum secret sharing with spin-orbit-structured photons. Phys Rev A 2020; 101(4): 042303. DOI: 10.1103/PhysRevA.101.042303.
  11. Forbes A. Sculpturing electric currents with structured light. Nat Photonics 2020; 14: 656-657. DOI: 10.1038/s41566-020-00705-7.
  12. Shen Y, Wan Z, Meng Y, Fu X, Gong M. Polygonal Vortex Beams. IEEE Photon J 2018; 10(4): 503016. DOI: 10.1109/JPHOT.2018.2858845.
  13. Lin Z, Hu J, Chen Y, Brès C-S, Yu S. Single-shot Kramers–Kronig complex orbital angular momentum spectrum retrieval. Adv Photonics 2023; 5(3): 036006. DOI: 10.1117/1.AP.5.3.036006.
  14. Shen Y, Zayats AV. Topology, skyrmions, and superoscillation of structured light. Proc SPIE 2023; PC12436: PC1243606. DOI: 10.1117/12.2653880.
  15. Shen Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M, Yuan X. Optical vortices 30 years on: OAM manipulation fromtopological charge to multiple singularities. Light Sci Appl 2019; 8: 90. DOI: 10.1038/s41377-019-0194-2.
  16. Forbes A, de Oliveira M, Dennis M. Structured light. Nat Photon 2021; 15: 253-262. DOI: 10.1038/s41566-021-00780-4.
  17. Izdebskaya Ya, Shvedov V, Volyar A. Symmetric array of off-axis singular beams: spiral beams and their critical points. J Opt Soc Am A 2008; 25(1): 171-181. DOI: 10.1364/JOSAA.25.000171.
  18. Volyar A, Shvedov V, Fadeyeva T, Desyatnikov AS, Neshev DN, Krolikowski W, Kivshar YuS. Generation of single-charge optical vortices with an uniaxial crystal. Opt Express 2006; 14: 3724-3729. DOI: 10.1364/OE.14.003724.
  19. Fadeyeva T, Alexeyev C, Rubass A, Volyar A. Vector erf-Gaussian beams: fractional optical vortices and asymmetric TE and TM modes. Opt Lett 2012; 37: 1397-1399. DOI: 10.1364/OL.37.001397.
  20. Gbur GJ. Singular optics. New York: CRC Press; 2017. DOI: 10.1201/ 9781315374260.
  21. Soifer VA, Golub MA. Laser beam mode selection by computer-generated holograms. Boca Raton: CRC Press; 1994. ISBN: 978-0-8493-2476-5.
  22. Porfirev AP, Kuchmizhak AA, Gurbatov SO, Juodkazis S, Khonina SN, Kulchin YuN. Phase singularities and optical vortices in photonics. Phys Usp 2022; 65(8): 789-811. DOI: 10.3367/UFNe.2021.07.039028.
  23. Daukantas P. Structured light without distortion. Optics and Photonics News. 2023. Source: <https://www.optica-opn.org/home/newsroom/2023/february/structured_light_without_distortion/>.
  24. Palagi S, Mark AG, Reigh SY, Melde K, Qiu T, Zeng H, Parmeggiani C, Martella D, Sanchez-Castillo A, Kapernaum N, Giesselmann F, Wiersma DS, Lauga E, Fischer P. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat Mater 2016; 15(6): 647-653. DOI: 10.1038/nmat4569.
  25. Wang X-L, Cai X-D, Su Z-E, Chen M-C, Wu D, Li L, Liu N-L, Lu C-Y, Pan J-W. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 2015; 518: 516-519. DOI: 10.1038/nature14246.
  26. Lukin VP. Outer scale of turbulence and its influence on fluctuations of optical waves. Phys Usp 2021; 191(3): 292-317. DOI: 10.3367/UFNe.2020.10.038849.
  27. Aksenov VP, Dudorov VV, Kolosov VV, Levitsky ME. Synthesized vortex beams in the turbulent atmosphere. Front Phys 2020; 143. DOI: 10.3389/fphy.2020.00143.
  28. Cox MA, Mphuthi N, Nape I, Mashaba N, Cheng L, Forbes A. Structured light in turbulence. IEEE J Sel Top Quantum Electron 2021; 27(2): 7500521. DOI: 10.1109/JSTQE.2020.3023790.
  29. Klug A, Peters C, Forbes A. Robust structured light in atmospheric turbulence. Adv Photonics 2023; 5: 016006. DOI: 10.1117/1.AP.5.1.016006.
  30. Abramochkin EG, Volostnikov VG. Modern Optics of Gaussian Beams [In Russian]. Moskow: "Fizmatlit" Publisher; 2010. ISBN: 978-5-9221-1216-1.
  31. Volyar AV, Bretsko MV, Akimova YaE, Egorov YuA. Beyond the light intensity or intensity moments and measurements of the vortex spectrum in complex light beams. Computer Optics 2018; 42(5): 736-743. DOI: 10.18287/2412-6179-2017-42-5-736-743.
  32. Volyar AV, Abramochkin EG, Akimova YE, Bretsko MV. Huge spikes and dips of the orbital angular momentum in structured Laguerre-Gaussian beams resistant to simple astigmatism. Computer Optics 2023; 47(3): 350-360. DOI: 10.18287/2412-6179-CO-1243.
  33. Allen L, Barnett SM, Padgett MJ. Optical angular momentum. Boca Raton: CRC Press; 2003. ISBN: 9780429174940.
  34. Torres JP, Torner L. Twisted photons: applications of light with orbital angular momentum. Bristol: Wiley-VCH; 2011. ISBN: 9783527635375.
  35. Kotlyar VV, Kovalev AA, Nalimov AG. Topological charge of optical vortices. Boca Raton: CRC Press; 2022. ISBN: 978-1-032-34553-6.
  36. Berry MV. Wave dislocation reactions in non-paraxial gaussian beams. J Mod Opt 1998; 45(9): 1845-1858. DOI: 10.1080/09500349808231706.
  37. Vasnetsov MV, Gorshkov VN, Marienko IG, Soskin MS. Wavefront motion in the vicinity of a phase dislocation: “optical vortex”. Opt Spectrosc 2000; 88(2): 260-265. DOI: 10.1134/1.626789.
  38. Kreminskaya LV, Soskin MS, Khizhnyak AI. The Gaussian lenses give birth to optical vortices in laser beams. Opt Commun 1998; 145(1): 377-384. DOI: 10.1016/S0030-4018(97)00473-2.
  39. Soskin MS, Vasnetsov MV. Singular optics. Ch 4. Amsterdam: Elsevier; 2001: 219-276. DOI: 10.1016/S0079-6638(01)80018-4.
  40. Volyar AV, Abramochkin EG, Bretsko MV, Akimova YE, Egorov YA. Can the radial number of vortex modes control the orbital angular momentum? Computer Optics 2022; 46(6): 853-863. DOI: 10.18287/2412-6179-CO-1169.
  41. Volyar A, Abramochkin E, Akimova Y, Bretsko M. Control of the orbital angular momentum via radial numbers of structured Laguerre–Gaussian beams. Opt Lett 2022; 47(10): 2402-2405. DOI: 10.1364/OL.459404.
  42. Volyar A, Abramochkin E, Akimova Y, Bretsko M. Super bursts of the orbital angular momentum in astigmatic-invariant structured LG beams. Opt Lett 2022; 47(21): 5537-5540. DOI: 10.1364/OL.474385.
  43. Pinnell J, Nape I, Sephton B, Cox MA, Rodríguez-Fajardo V, Forbes A. Modal analysis of structured light with spatial lightmodulators: A practical tutorial. J Opt Soc Am A 2020; 37: C146-C160. DOI: 10.1364/josaa.398712.
  44. Wang J, Liang Y. Generation and detection of structured light: A review. Front Phys 2021; 9: 688284. DOI: 10.3389/fphy.2021.688284.
  45. Forbes A, Dudley A, McLaren M. Creation and detection of optical modes with spatial light modulators. Adv Opt Photon 2016; 8(2): 200-227. DOI: 10.1364/AOP.8.000200.
  46. Flamm D, Grossmann DG, Sailer M, Kaiser M, Zimmermann F, Chen K, Jenne M, Kleiner J, Hellstern J, Tillkorn C, Sutter DH, Kumkar M. Structured light for ultrafast laser micro- and nanoprocessing. Opt Eng 2021; 60(2): 025105. DOI: 10.1117/1.OE.60.2.025105.
  47. Dennis MR, Alonso MA. Swings and roundabouts: optical Poincaré spheres for polarization and Gaussian beams. Phil TransR Soc A 2017; 375: 20150441. DOI: 10.1098/rsta.2015.0441.
  48. Shen Y, Wang Z, Fu X, Naidoo D, Forbes A. SU(2) Poincaré sphere: A generalized representation for multidimensional structured light. Phys Rev A 2020; 102: 031501(R). DOI: 10.1103/PhysRevA.102.031501.
  49. Hsieh C-L, Wang C-H, Сhung W-C, Liang H-C, Chen Y-F. Transition from eigenmodes to geometric modes characterized by the quantum SU(2) coupled oscillator model: a review. Opt Continuum 2023; 2(4): 738-750. DOI: 10.1364/OPTCON.484492.
  50. Gutierrez-Cuevas R, Wadood SA, Vamivakas AN, Alonso MA. Modal Majorana sphere and hidden symmetries ofstructured-Gaussian beams. Phys Rev Lett 2019; 125: 123903. DOI: 10.1103/PhysRevLett.125.123903.
  51. Fadeyeva TA, Rubass AF, Aleksandrov RV, Volyar AV. Does the optical angular momentum change smoothly in fractional-charged vortex beams? J Opt Soc Am B 2014; 31: 798-805. DOI: 10.1364/JOSAB.31.000798.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20