(48-6) 12 * << * >> * Russian * English * Content * All Issues

Technology for detection and subtype classification of drusen using OCT data for diagnosing age-related macular degeneration
N.Yu. Ilyasova 1,22, N.S. Demin 1,2, D.V. Kirsh 1,2

Samara National Research University,
443086, Samara, Russia, Moskovskoye Shosse 34;
Image Processing Systems Institute, NRC "Kurchatov Institute",
443001, Samara, Russia, Molodogvardeyskaya 151

 PDF, 6939 kB

DOI: 10.18287/2412-6179-CO-1556

Pages: 903-912.

Full text of article: Russian language.

Abstract:
The purpose of the paper is to identify the subtypes of drusen on OCT images for the diagnosis of age-related macular degeneration. The relevance of the problem is determined not only by the large number of people around the world suffering from this disease, but also by the crucial importance of identifying the age-related macular degeneration in the early stages. We propose a two-stage technology: at the first stage, the drusen are identified on OCT images, and at the second stage, they are classified based on features of reflexivity. The study showed that the proposed technology makes it possible to achieve 98 % classification accuracy.

Keywords:
age-related macular degeneration, OCT images, reflexivity, binary classification, segmentation.

Citation:
Ilyasova NYu, Demin NS, Kirsh DV. Technology for detection and subtype classification of drusen using OCT data for diagnosing age-related macular degeneration. Computer Optics 2024; 48(6): 903-912. DOI: 10.18287/2412-6179-CO-1556.

Acknowledgements:
This work was funded under the state project of the NRC “Kurchatov Institute”.

References:

  1. Ilyasova NYu, Demin NS, Shirokanev AS, Kupriyanov AV, Zamytskiy EA. Method for selection macular edema region using optical coherence tomography data. Computer Optics 2020; 44(2): 250-258. DOI: 10.18287/2412-6179-CO-691.
  2. Fursova AG, Gusarevich OG, Tarasov MS, Casilieva MA, Chubar NV, Litvinova NV. Age-related macular degeneration and glaucoma. Epidemiological and clinical-pathogenetic aspects of the combined course [In Russian]. Siberian Scientific Medical Journal 2018; 6: 83-91. DOI: 10.15372/SSMJ20180514.
  3. Gerland P, Hertog S, Kantorova V, Wheldon M. World population prospects 2022: Summary of results. New York: United Nations; 2022. ISBN: 978-92-1-148373-4.
  4. Boiko EV, Doga AV, Egorov VV. Drusen structure as a biomarker of AMD progression [In Russian]. New in Ophthalmology 2016; 4: 5.
  5. Sisternes L, Jonna G, Greven MA, Leng T, Rubin D. Individual drusen segmentation and repeatability and reproducibility of their automated quantification in optical coherence tomography images. Trans Vis Sci Tech 2017; 6(1): 12. DOI: 10.1167/tvst.6.1.12.
  6. Samsonov DY, Yuryeva TN, Zhukova SI. Method for determining structural and functional changes in the retina and optic nerve with optic disc drusen [In Russian]. Pat RF of Invent N 2726072 of July 09, 2020, Russian Bull of Inventions N38, 2020.
  7. Veerappan M, El-Hage-Sleiman AM, Tai V, Chiu S, Winter K, Stinnett S, Hwang T, Baker G, Michelson M, Gunther R, Chew E, Toth C. optical coherence tomography reflective drusen substructures predict progression to geographic atrophy in age-related macular degeneration. Ophthalmology 2016; 123(12): 2554-2570. DOI: 10.1016/j.ophtha.2016.08.047.
  8. Khanifar AA, Koreishi AF, Izatt JA, Toth CA. Drusen ultrastructure imaging with spectral domain optical coherence tomography in age-related macular degeneration. Ophthalmology 2008; 115(11): 1883-1890. DOI: 10.1016/j.ophtha.2008.04.041.
  9. Leuschen JN, Schuman SG, Winter KP, McCall M, Wong W, Chew E, Hwang T, Sarin N, Clemons T, Harrington M, Toth C. Spectral-domain optical coherence tomography characteristics of intermediate age-related macular degeneration. Ophthalmology 2013; 120(1): 140-150. DOI: 10.1016/j.ophtha.2012.07.004.
  10. Ilyasova NY, Kupriyanov AV, Khramov AG. Information technologies for image analysis in medical diagnostic tasks [In Russian]. Moscow: "Radio i Svyaz" Publisher; 2012. ISBN: 5-89776-014-4.
  11. Chen Q, Leng T, Zheng L, Kutzcher L, Ma J, Sisternes L, Rubin D. Automated drusen segmentation and quantification in SD-OCT images. Med Image Anal 2013; 17(8): 1058-1072. DOI: 10.1016/j.media.2013.06.003.
  12. Farsiu S, Chiu SJ, Izatt J, Toth C. Fast detection and segmentation of drusen in retinal optical coherence tomography images. Proc SPIE 2008; 6844: 68440D. DOI: 10.1117/12.768624.
  13. Chiu SJ, Izatt J, O`Connell RV, Winter KP. Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images. Invest Ophthalmol Vis Sci 2012; 53(1): 53-61. DOI: 10.1167/iovs.11-7640.
  14. Chiu SJ, Li XT, Nicholas P, Toth C, Izatt J, Farsiu S. Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt Express 2010; 18(18): 19413-19428. DOI: 10.1364/OE.18.019413.
  15. Asgari R, Waldstein S, Schlanitz F. U-Net with spatial pyramid pooling for drusen segmentation in optical coherence tomography. In Book: Fu H, Garvin MK, MacGillivray T, Xu Y, Zheng Y, eds. Ophthalmic medical image analysis. Cham: Springer Nature Switzerland AG; 2019: 77-85. DOI: 10.1007/978-3-030-32956-3_10.
  16. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. In Book: Navab N, Hornegger J, Wells WM, Frangi AF, eds. Medical image computing and computer-assisted intervention – MICCAI 2015. Cham: Springer International Publishing Switzerland; 2015: 234-241. DOI: 10.1007/978-3-319-24574-4_28.
  17. Mishra Z, Ganegoda A, Selicha J, Wang Z. Automated retinal layer segmentation using graph-based algorithm incorporating deep-learning-derived information. Sci Rep 2020; 10(1): 9541. DOI: 10.1038/s41598-020-66355-5.
  18. Sousa JA, Paiva A, Silva A, Almedia J, Braz G, Diniz J, Figueredo W, Gattass M. Automatic segmentation of retinal layers in OCT images with intermediate age-related macular degeneration using U-Net and DexiNed. PLoS ONE 2021; 16(5): e0251591. DOI: DOI: 10.1371/journal.pone.0251591.
  19. Wang M, Zhu W, Shi F, Su J, Chen H, Yu K, Zhou Y, Peng Y, Chen Z, Chen X. MsTGANet: Automatic drusen segmentation from retinal OCT images. IEEE Trans Med Imaging 2022; 41(2): 394-406. DOI: 10.1109/TMI.2021.3112716.
  20. Mishra Z, Ganegoda A, Selicha J, Wang Z. Automated retinal layer segmentation using graph-based algorithm incorporating deep-learning-derived information. Sci Rep 2020; 10(1): 9541. DOI: 10.1038/s41598-020-66355-5.
  21. Sherer MV, Lin D, Elguindi S, Duke S, Tan L, Caciedo J, Dahele M, Gillespie E. Metrics to evaluate the performance of auto-segmentation for radiation treatment planning: A critical review. Radiother Oncol 2021; 160: 185-191. DOI: 10.1016/j.radonc.2021.05.003.
  22. Gu Q, Zhu L, Cai Z. Evaluation measures of the classification performance of imbalanced data sets. In Book: Cai Z, Li Z, Kang Z, Liu Y, eds. Computational intelligence and intelligent systems. Berlin, Heidelberg: Springer-Verlag; 2009: 461-471. DOI: 10.1007/978-3-642-04962-0_53.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20