(48-6) 19 * << * >> * Russian * English * Content * All Issues

Method for real-time estimation of phase-shift angle and instantaneous frequency of quasi-harmonic signals
A.V. Nikitin 1, D.A. Stankevich 1

Volgograd State University,
400062, Volgograd, Russia, Universitetsky prt. 100

 PDF, 873 kB

DOI: 10.18287/2412-6179-CO-1442

Pages: 969-974.

Full text of article: Russian language.

Abstract:
In this paper, a method for estimating the phase shift angle between two quasi-harmonic signals over a small observation interval is proposed and investigated. The developed method allows us to study the dynamics of phase angle and instantaneous frequency in real time. Conditions under which the phase angle estimation is stable in the presence of amplitude and frequency modulation are formulated. Analytical expressions for estimation errors depending on signal parameters and normal noise level are obtained. The proposed method involves a small number of computing operations and can be used in autonomous systems, where computational resources are usually limited.

Keywords:
quasi-harmonic signal, phase shift angle, instantaneous frequency.

Citation:
Nikitin AV, Stankevich DA. Method for real-time estimation of phase-shift angle and instantaneous frequency of quasi-harmonic signals. Computer Optics 2024; 48(6): 969-974. DOI: 10.18287/2412-6179-CO-1442.

References:

  1. Djurović I, Simeunović M. The STFT-based estimator of micro-Doppler parameters. Digit Signal Process 2018; 72(1): 59-74. DOI: 10.1016/j.dsp.2017.10.003.
  2. Yakovleva TV. Determining the phase shift of quasiharmonic signals through envelope analysis. Computer Optics 2017; 41(6): 950-956. DOI: 10.18287/2412-6179-2017-41-6-950-956.
  3. Faerman V, Avramchuk V, Voevodin K, Sidorov I, Kostyuchenko E. Study of generalized phase spectrum time delay estimation method for source positioning in small room acoustic environment. Sensors 2022; 22(3): 965. DOI: 10.3390/s22030965.
  4. Wang L, Xie F, Zhang Y, Xiao M, Liu F. Adaptive optical phase estimation for real-time sensing of fast-varying signals. Sci Rep 2022; 12: 21745. DOI: 10.1038/s41598-022-26329-1
  5. Pikovsky A, Kurths J. Synchronization. A universal concept in nonlinear sciences. Cambridge: Cambridge University Press; 2001. ISBN: 978-0-521533522.
  6. Wodeyar A, Schatza M, Widge AS, Eden UT, Kramer MA. A state space modeling approach to real-time phase estimation. eLife 2021; 10: e68803. DOI: 10.7554/eLife.68803.
  7. Rosenblum M, Pikovsky A, Kühn AA, Busch JL. Real-time estimation of phase and amplitude with application to neural data. Sci Rep 2021; 11: 18037. DOI: 10.1038/s41598-021-97560-5.
  8. Boashash B. Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals. Proc IEEE 1992; 80(4): 520-538. DOI: 10.1109/5.135376.
  9. Ignatjev VK, Nikitin AV, Yushanov SV. Parametric analysis of oscillations with slowly varying frequency. Radiophys Quantum El 2010; 53: 132-145. DOI: 10.1007/s11141-010-9209-9.
  10. Ignat’ev VK, Nikitin AV, Bernardo-Saprykin VH, Orlov AA. Measuring phase difference of quasi-harmonic signals in real time. Sci Educ 2013; 7: 241-256. DOI: 10.7463/0713.0588392
  11. Zielinski TP. Instantaneous phase shift estimation methods. Instrumentation and Measurement Technology Conf 1996 (IMTC-96). Conf Proc 1996: 162-167.
  12. Application note an5325: How to use the CORDIC to perform mathematical functions on STM32 MCUs. Source: <https://www.st.com/resource/en/application_note/ an5325-how-to-use-the-cordic-to-perform-mathematical-functions-on-stm32-mcus-stmicroelectronics.pdf>.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20