(49-1) 14 * << * >> * Russian * English * Content * All Issues
  
Towards using smartphones as hyperspectral cameras
 D. Reutsky 1,2, A. Pogadaev 1,2, D. Vladimirov 1,2, E. Ershov 1,2
 1 Institute for Information Transmition Problems (Kharkevich Institute),
 127051, Moscow, Bolshoy Karetny per. 19, build. 1;
     2 Moscow Institute of Physics and Technology (National Research University),
  141701, Russia, Dolgoprudny, Moscow Region, Institutskiy per. 9
 PDF, 6673 kB
  PDF, 6673 kB
DOI: 10.18287/2412-6179-CO-1315
Pages: 112-120.
Full text of article: Russian language.
 
Abstract:
Spectral reconstruction  (SR, recovering spectra from RGB measurements) is a vital problem of  computational photography. However, even recent algorithms do not provide  acceptable accuracy. As a matter of curiosity, modern mobile devices open a new  opportunity to improve the quality of SR by utilizing images from several  cameras at once. This leads to the idea of creating a mobile hyperspectral  camera for the general public. In this paper we investigate the achievable  accuracy when using several identical cameras simultaneously in combination  with different spectral filters. To find optimal filters, two algorithms are  proposed: one learns linear regression for SR and the other learns fully  connected neural network. As a result of numerical experiments, it is found  that in the case of 4 cameras and 4 filters, the SR accuracy is three times  higher than in the case of SR from RGB images.
Keywords:
spectrum, hyperspectral  imaging, hyperspectral reconstruction.
Citation:
  Reutsky DA, Pogadaev AV, Vladimirov DM, Ershov EI. Towards using smartphones as hyperspectral cameras. Computer Optics 2025; 49(1): 112-120. DOI: 10.18287/2412-6179-CO-1315.
References:
  - Leon R, Martinez-Vega B,  Fabelo H, et al. Non-invasive skin cancer diagnosis using hyperspectral imaging  for in-situ clinical support. J Clin  Med 2020; 9(6): 1662. DOI: 10.3390/jcm9061662.
 
- Fabelo H, Halicek M,  Ortega S, et al. Deep learning-based framework for in vivo identification of glioblastoma tumor using hyperspectral  images of human brain. Sensors  2019; 19(4): 920. DOI:  10.3390/s19040920.
 
- Underwood E, Ustin S, DiPietro D.  Mapping nonnative plants using hyperspectral imagery. Remote Sens Environ 2003; 86(2): 150-161. DOI:  https://doi.org/10.1016/S0034-4257(03)00096-8.
 
- Chu X, Miao P, Zhang K, Wei H, Fu H,  Liu H, Jiang H, Ma Z. Green banana maturity classification and quality  evaluation using hyperspectral imaging. Agriculture  2022; 12(4): 530. DOI: 10.3390/agriculture12040530.
 
- Specim, Spectral Imaging Ltd. Case  study: Picvisa – machine vision solutions for waste treatment and recycling.  2020. Source:  <https://www.specim.com/case-study-picvisa-machine-vision-solutions-for-waste-treatment-recycling>.
 
- Specim, Spectral Imaging Ltd.  Spectral imaging in machine vision solutions. 2022. Source:  <https://www.specim.com/industry>.
 
- Arad B, Timofte R, Ben-Shahar O, et  al. NTIRE 2020 challenge on spectral reconstruction from an RGB image. 2020 IEEE/CVF Conf on Computer Vision and  Pattern Recognition Workshops (CVPRW) 2020: 1806-1822. DOI:  10.1109/CVPRW50498.2020.00231.
 
- Aeschbacher J, Wu J, Timofte R. In  defense of shallow learned spectral reconstruction from RGB images. 2017 IEEE Int Conf on Computer Vision  Workshops (ICCVW) 2017: 471-479. DOI: 10.1109/ICCVW.2017.63.
 
- Shi Z, Chen C, Xiong Z, Liu D, Wu F.  HSCNN+: Advanced CNN-based hyperspectral recovery from RGB images. 2018 IEEE/CVF Conf on Computer Vision and Pattern  Recognition Workshops (CVPRW) 2018: 939-947. DOI:  10.1109/CVPRW.2018.00139.
 
- Cai Y, Lin J, Lin Z, Wang H, Zhang  Y, Pfister H, Timofte R, Van Gool L. MST++: Multi-stage spectral-wise transformer  for efficient spectral reconstruction. 2022  IEEE/CVF Conf on Computer Vision and Pattern Recognition Workshops (CVPRW)  2022: 745-755. DOI: 10.1109/CVPRW56347.2022.00090.
 
- Helling S, Seidel E, Biehlig W.  Algorithms for spectral color stimulus reconstruction with a seven-channel  multispectral camera. CGIV 2004: The  Second European Conf on Colour Graphics, Imaging and Vision 2004; 2:  art00051. DOI: 10.2352/CGIV.2004.2.1.art00051.
 
- Valero EM, Nieves JL, Nascimento  SMC, Amano K, Foster DH. Recovering spectral data from natural scenes with an  RGB digital camera and colored filters. Color  Res Appl 2007; 32(5): 352-360. DOI: 10.1002/col.20339.
 
- Finlayson GD, Zhu Y. Designing color  filters that make cameras more colorimetric. IEEE Trans Image Process 2020; 30: 853-867. DOI:  10.1109/TIP.2020.3038523.
 
- Ng D-Y, Allebach JP. A subspace matching color filter design  methodology for a multispectral imaging system. IEEE Trans Image Process 2006; 15(9): 2631-2643. DOI:  10.1109/TIP.2006.877384.
 
- Nie S, Gu L, Zheng Y, Lam A, Ono N, Sato I. Deeply  learned filter response functions for hyperspectral reconstruction. 2018 IEEE/CVF Conf on Computer Vision and  Pattern Recognition 2018: 4767-4776. DOI: 10.1109/CVPR.2018.00501.
 
- OMDIA.  Smartphone oems shifting to higher camera resolution configurations with fewer  lenses in response to continued semiconductor shortage, finds new Omdia  research. 2021. Source: <https://omdia.tech.informa.com/pr/2021-dec/smartphone-oems-shifting-to-higher-camera-resolution-configurations-with-fewer-lenses-in-response-to-continued-semiconductor-shortage-finds-new-omdia-research>.
 
- Foster DH,  Amano K, Nascimento SMC, Foster MJ. Frequency of metamerism in natural scenes. J Opt Soc Am A 2006; 23(10):  2359-2372. DOI: 10.1364/JOSAA.23.002359.
 
- Lin  Y-T, Finlayson G. Physically plausible spectral reconstruction. Sensors 2020; 20(21): 6399. DOI:  10.3390/s20216399.
 
- Li  Y, Fu Q, Heidrich W. Multispectral illumination estimation using deep unrolling  network. 2021 IEEE/CVF Int Conf on Computer Vision (ICCV) 2021: 1-8. DOI:  10.1109/ICCV48922.2021.00267.
 
- Colorimetric  illuminants. 2024. Source:  <https://cie.co.at/publications/colorimetric-illuminants>. 
 
- Rochester Institute of Technology.  Camera spectral sensitivity database. 2013. Source:  <http://www.gujinwei.org/research/camspec/db.html>. 
- Shepelev DA, Bozhkova VP, Ershov EI, Nikolaev DP.  Simulating shot noise of color underwater images. Computer Optics 2020; 44(4):  671-679. DOI: 10.18287/2412-6179-CO-754.
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20