(49-2) 10 * << * >> * Russian * English * Content * All Issues
Brain tumor classification using deep convolutional neural networks
M. Nurtay 1, M. Kissina 1, A. Tau 1, A. Akhmetov 1, G. Alina 1, N. Mutovina 1
1 Abylkas Saginov Karagandy Technical University,
100000, 56 N. Nazarbayev avenue, Karagandy, Kazakhstan
PDF, 1390 kB
DOI: 10.18287/2412-6179-CO-1476
Pages: 253-262.
Full text of article: English language.
Abstract:
This study presents a comparative analysis of various convolutional neural network (CNN) models for brain tumor detection on MRI medical images. The primary aim was to assess the effectiveness of different CNN architectures in accurately identifying brain tumors. Multiple models were trained, including a custom-designed CNN with its specific layer architecture, and models based on Transfer Learning utilizing pre-trained neural networks: ResNet-50, VGG-16, and Xception. Performance evaluation of each model in terms of accuracy metrics such as precision, recall, F1-score, and confusion matrix on a test dataset was carried out. The dataset used in this study was obtained from the openly accessible Kaggle competition "Brain Tumor Detection from MRI." This dataset consisted of four classes: glioma, meningioma, no tumor (healthy), and pituitary, ensuring a balanced representation. Testing four models revealed that the custom CNN architecture, utilizing separable convolutions and batch normalization, achieved an average ROC AUC score of 0.99, outperforming the other models. Moreover, this model demonstrated an accuracy of 0.94, indicating its robust performance in brain tumor classification on MRI images.
Keywords:
brain tumor, computer vision, pattern recognition, machine learning, deep learning, convolutional neural network, transfer learning.
Citation:
Nurtay M, Kissina M, Tau A, Akhmetov A, Alina G, Mutovina N. Brain tumor classification using deep convolutional neural networks. Computer Optics 2025; 49(2): 253-262. DOI: 10.18287/2412-6179-CO-1476.
References:
- O'Shea K, Nash R. An introduction to convolutional neural networks. arXiv Preprint. 2015. Source: <https://arxiv.org/abs/1511.08458>. DOI: 10.48550/arXiv.1511.08458.
- Yamashita R, Nishio M, Do RKG, et al. Convolutional neural networks: an overview and application in radiology. Insights Imaging 2018; 9(4): 611-629. DOI: 10.1007/s13244-018-0639-9.
- ZainEldin H, Gamel SA, El-Kenawy EM, Alharbi AH, Khafaga DS, Ibrahim A, Talaat FM. Brain tumor detection and classification using deep learning and sine-cosine fitness grey wolf optimization. Bioengineering 2022; 10(1): 18. DOI: 10.3390/bioengineering10010018.
- Hossain T, Shishir FS, Ashraf M, Al Nasim MDA, Shah FM. Brain tumor detection using convolutional neural network. 2019 1st Int Conf on Advances in Science, Engineering and Robotics Technology (ICASERT) 2019: 1-6. DOI: 10.1109/ICASERT.2019.8934561.
- Fahad KA, Wael H. Blood diseases detection using classical machine learning algorithms. Int J Adv Comput Sci Appl 2019; 10(7): 77-81. DOI: 10.14569/IJACSA.2019.0100712.
- Fatima M, Pasha M. Survey of machine learning algorithms for disease diagnostic. J Intell Learn Syst Appl 2017; 9(1): 73781.DOI: 10.4236/jilsa.2017.91001.
- Schaefer J, Lehne M, Schepers J, Prasser F, Thun S. The use of machine learning in rare diseases: A scoping review. Orphanet J Rare Dis 2020; 15: 145. DOI: 10.1186/s13023-020-01424-6.
- Ahishakiye E, Van Gijzen MB, Tumwiine J, Wario R, Johnes Obungoloch J. A survey on deep learning in medical image reconstruction. Intell Med 2021; 1(3): 118-127. DOI: 10.1016/j.imed.2021.03.003.
- Poudel S. A study of disease diagnosis using machine learning. Med Sci Forum 2022; 10(1): 8. DOI: 10.3390/IECH2022-12311.
- Kumar S, Dhir R, Chaurasia N. Brain tumor detection analysis using CNN: A review. 2021 Int Conf on Artificial Intelligence and Smart Systems (ICAIS) 2021: 1061-1067. DOI: 10.1109/ICAIS50930.2021.9395920.
- Refaat FM, Gouda MM, Omar M. Detection and classification of brain tumor using machine learning algorithms. Biomed Pharmacol J 2022; 15(4): 2381-2397. DOI: 10.13005/bpj/2576.
- Zhen S-H, Cheng M, Tao Y-B, Wang Y-F, Juengpanich S, Jiang Z-Y, Jiang Y-K, Yan Y-Y, Lu W, Lue J-M, Qian J-H, Wu Z-Y, Sun J-H, Lin H, Cai X-J. Deep learning for accurate diagnosis of liver tumor based on magnetic resonance imaging and clinical data. Front Oncol 2020; 10: 680. DOI: 10.3389/fonc.2020.00680.
- Ramaha NTA, Mahmood RM, Hameed AA, Fitriyani NL, Alfian G, Syafrudin M. Brain pathology classification of MR images using machine learning techniques. Computers 2023; 12(8): 167. DOI: 10.3390/computers12080167.
- Anagun Y. Smart brain tumor diagnosis system utilizing deep convolutional neural networks. Multimed Tools Appl 2023; 82: 44527-44553. DOI: 10.1007/s11042-023-15422-w.
- Amin J, Sharif M, Haldorai A, Mussarat Y, Nayak R. Brain tumor detection and classification using machine learning: a comprehensive survey. Complex Intell Syst 2021; 8: 3161-3183. DOI: 10.1007/s40747-021-00563-y.
- Al-Ayyoub M, Husari G, Darwish O, Alabed A. Machine learning approach for brain tumor detection. ICICS '12: Proc 3rd Int Conf on Information and Communication Systems 2012: 23. DOI: 10.1145/2222444.2222467.
- Brain tumor classification (MRI). 2024. Source: <https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri>.
- Hosna A, Merry E, Gyalmo J, et al. Transfer learning: a friendly introduction. J Big Data 2022; 9: 102. DOI: 10.1186/s40537-022-00652-w.
- Zhuang F, Qi Z, Duan K, Xi D, Zhu Y, Zhu H, Xiong H, He Q. A comprehensive survey on transfer learning. Proc IEEE 2021; 109(1): 43-76. DOI: 10.1109/JPROC.2020.3004555.
- Banu TS, DR Mani VRs. Cotton crop monitoring system using CNN. Journal of Xi'an University of Architecture & Technology 2020; XII(3): 5728-5736. DOI: 10.37896/JXAT12.03/529.
- Brain tumor detection- Keras/Pytorch. 2024. Source: <https://www.kaggle.com/code/fahadmehfoooz/brain-tumor-detection-keras-pytorch>.
- Brain tumor MRI classification: TensorFlow CNN. 2024. Source: <https://www.kaggle.com/code/jaykumar1607/brain-tumor-mri-classification-tensorflow-cnn>.
- Brain tumor classify MONAI Pytorch. 2024. Source: <https://www.kaggle.com/code/stpeteishii/brain-tumor-classify-monai-pytorch>.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20