(49-2) 12 * << * >> * Russian * English * Content * All Issues

Multiple embedding of watermarks into a spatial-frequency domain of images based on a genetic algorithm
A.S. Melman 1, O.O. Evsutin 1, O.E. Senyukova 1

National Research University Higher School of Economics,
Myasnitskaya Ulitsa 20, Moscow,101000, Russia

 PDF, 1025 kB

DOI: 10.18287/2412-6179-CO-1481

Pages: 273-281.

Full text of article: Russian language.

Abstract:
The widespread use of digital content makes the task of protecting author’s and owner’s rights increasingly important, in particular with regard to digital images. Digital watermarking technology is an effective tool that solves many problems associated with proving authorship of images, verifying authenticity, and tracking illegal copying. An effective watermarking algorithm requires achieving high levels of imperceptibility and robustness, which is a difficult task, since improving one of these indicators usually leads to a deterioration in the other. This study proposes a new watermarking algorithm in a hybrid spatial-frequency image domain based on multiple embedding and metaheuristic optimization. Watermark embedding is done by changing a block of image pixels according to some change matrix, which is selected adaptively for each block using a genetic algorithm. During the extraction stage, a value of each watermark bit is determined using all embedded copies. Neither an original image nor an original watermark is required for data extraction. Experimental results show that the proposed algorithm is highly imperceptible and resistant to a number of image processing attacks.

Keywords:
information security, digital watermarking, image processing, genetic algorithm, multiple embedding.

Citation:
Melman AS, Evsutin OO, Senyukova OE. Multiple embedding of watermarks into a spatial-frequency domain of images based on a genetic algorithm. Computer Optics 2025; 49(2): 273-281. DOI: 10.18287/2412-6179-CO-1481.

Acknowledgements:
This work is an output of a research project implemented as part of the Basic Research Program at the National Research University, Higher School of Economics (HSE University).

References:

  1. Begum M, Uddin MS. Digital image watermarking techniques: A review. Information 2020; 11(2): 110. DOI: 10.3390/info11020110.
  2. Boujerfaoui S, Riad R, Douzi H, Ros F, Harba R. Image watermarking between conventional and learning-based techniques: A literature review. Electronics 2023; 12(1): 74. DOI: 10.3390/electronics12010074.
  3. Islam M, Laskar RH. Geometric distortion correction based robust watermarking scheme in LWT-SVD domain with digital watermark extraction using SVM. Multimed Tools Appl 2018; 77(11): 14407-14434. DOI: 10.1007/s11042-017-5035-9.
  4. Hatoum MW, Darazi R, Couchot J-F. Normalized blind STDM watermarking scheme for images and PDF documents robust against fixed gain attack. Multimed Tools Appl 2020; 79(3-4): 1887-1919. DOI: 10.1007/s11042-019-08242-4.
  5. Li Y-M, Wei D, Zhang L. Double-encrypted watermarking algorithm based on cosine transform and fractional Fourier transform in invariant wavelet domain. Inf Sci 2021; 551: 205-227. DOI: 10.1016/j.ins.2020.11.020.
  6. Zhang W, Chen J, Zhang Y. Global resynchronization-based image watermarking resilient to geometric attacks. Comput Electr Eng 2018; 67: 182-194. DOI: 10.1016/j.compeleceng.2018.02.051.
  7. Parah SA, Loan NA, Shah AA, Sheikh JA, Bhat GM. A new secure and robust watermarking technique based on logistic map and modification of DC coefficient. Nonlinear Dyn 2018; 93: 1933-1951. DOI: 10.1007/s11071-018-4299-6.
  8. Mousavi SM, Naghsh A, Manaf AA, Abu-Bakar SAR. A robust medical image watermarking against salt and pepper noise for brain MRI images. Multimed Tools Appl 2017; 76(7): 10313-10342. DOI: 10.1007/s11042-016-3622-9.
  9. Lebcir M, Awang S, Benziane A. Robust blind watermarking approach against the compression for fingerprint image using 2D-DCT. Multimed Tools Appl 2022; 81(15): 20561-20583. DOI: 10.1007/s11042-022-12365-6.
  10. Chen W, Ren N, Zhu C, Zhou Q, Seppänen T, Keskinarkaus A. Screen-Cam Robust Image Watermarking with Feature-Based Synchronization. Appl Sci 2020; 10(21): 7494. DOI: 10.3390/app10217494.
  11. Hsu C-S, Tu S-F. Enhancing the robustness of image watermarking against cropping attacks with dual watermarks. Multimed Tools Appl 2020; 79(17-18): 11297-11323. DOI: 10.1007/s11042-019-08367-6.
  12. Cedillo-Hernandez M, Cedillo-Hernandez A, Garcia-Ugalde FJ. Improving DFT-Based Image Watermarking Using Particle Swarm Optimization Algorithm. Mathematics 2021; 9(15): 1795. DOI: 10.3390/math9151795.
  13. Barlaskar SA, Singh SV, Anish Monsley K, Laskar RH. Genetic algorithm based optimized watermarking technique using hybrid DCNN-SVR and statistical approach for watermark extraction. Multimed Tools Appl 2022; 81(5): 7461-7500. DOI: 10.1007/s11042-021-11798-9.
  14. Moosazadeh M, Ekbatanifard G. A new DCT-based robust image watermarking method using teaching-learning-based optimization. J Inf Secur Appl 2019; 47: 28-38. DOI: 10.1016/j.jisa.2019.04.001.
  15. Sinhal R, Ansari IA. Tunable Q-factor wavelet transform-based robust image watermarking scheme using logistic mapping and antlion optimization. Circuits Syst Signal Process 2022; 41(11): 6370-6410. DOI: 10.1007/s00034-022-02090-8.
  16. Li L, Bai R, Zhang S, Chang C-C, Shi M. Screen-shooting resilient watermarking scheme via learned invariant keypoints and QT. Sensors 2021; 21(19): 6554. DOI: 10.3390/s21196554.
  17. Melman AS, Evsutin OO. Efficient and error-free information hiding in the hybrid domain of digital images using metaheuristic optimization [In Russian]. Comput Res Model 2023; 15(1): 197-210. DOI: 10.20537/2076-7633-2023-15-1-197-210.
  18. Chen B, Wornell GW. Quantization index modulation: a class of provably good methods for digital watermarking and information embedding. IEEE Trans Inf Theory 2001; 47(4): 1423-1443. DOI: 10.1109/18.923725.
  19. Mitekin VA, Fedoseev VA. New secure QIM-based information hiding algorithms. Computer Optics 2018; 42(1): 118-127. DOI: 10.18287/2412-6179-2018-42-1-118-127.
  20. Evsutin O, Melman A, Meshcheryakov R. Algorithm of error-free information embedding into the DCT domain of digital images based on the QIM method using adaptive masking of distortions. Signal Process 2021; 179: 107811. DOI: 10.1016/j.sigpro.2020.107811.
  21. Fan X, Sayers W, Zhang S, Han Z, Ren L, Chizari H. Review and classification of bio-inspired algorithms and their applications. J Bionic Eng 2020; 17(3): 611-631. DOI: 10.1007/s42235-020-0049-9.
  22. Goldberg DE. Genetic algorithms in search, optimization and machine learning. Boston, MA: Addison-Wesley Longman Publishing Co Inc; 1989. ISBN: 978-0-201-15767-3.
  23. The USC-SIPI image database. 2024. Source: <http://sipi.usc.edu/database>.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20