(49-2) 18 * << * >> * Russian * English * Content * All Issues

Modeling the influence of the geometrical unsharpness on the neutron radiography and tomography images of porous materials
I.Yu. Zel 1

Joint Institute for Nuclear Research,
141980, Russia, Dubna, Joliot-Curie St. 6

 PDF, 1762 kB

DOI: 10.18287/2412-6179-CO-1478

Pages: 327-333.

Full text of article: English language.

Abstract:
Beam divergence is one of the instrument resolution parameters in neutron computed tomography. In pinhole geometry, due to the finite size of the source, geometric unsharpness affects the transmission images and therefore influences the reconstructed data. In this paper, we propose an approach for deterministic simulation of this effect for a voxelized 3D object. The idea behind the proposed approach is to use multiple point sources at a pinhole position and collect transmission images from each of them. The implementation was done using the ASTRA toolbox by calculating cone beam projections from each point source. This approach was applied to a porous phantom. Artifacts associated with beam divergence were identified in the reconstructed data. The influence of beam divergence on the segmentation of pores by binarization of the reconstructed data has been considered.

Keywords:
geometrical unsharpness, neutron tomography, ASTRA toolbox, porous material.

Citation:
Zel IY. Modeling the influence of the geometrical unsharpness on the neutron radiography and tomography images of porous materials. Computer Optics 2025; 49(2): 327-333. DOI: 10.18287/2412-6179-CO-1478.

Acknowledgements:
This work was supported by Russian Science Foundation, grant № 23-72-01031, https://rscf.ru/project/23-72-01031/.

References:

  1. Podurets KM, Kichanov SE, Glazkov VP, Kovalenko ES, Murashev MM, Kozlenko DP, Lukin EV, Yatsishina EB. Modern methods of neutron radiography and tomography in studies of the internal structure of objects. Crystallogr Rep 2021; 66(2): 254-266. DOI: 10.1134/S1063774521020115.
  2. Zel IY, Petružálek M, Lokajíček T, Ivankina TI, Kichanov SE, Kozlenko DP, Porosnicu I, Schnabl P, Pruner P, Duliu OG. Assessment of structural, magnetic, and P-wave velocity anisotropy of two biotite gneisses from X-ray and neutron tomography. Tectonophysics 2021; 812: 228925. DOI: 10.1016/j.tecto.2021.228925.
  3. Kichanov SE, Kozlenko DP, Lukin EV, Rutkauskas AV, Krasavin EA, Rozanov AY, Savenko BN. A neutron tomography study of the Seymchan pallasite. Meteorit Planet Sci 2018; 53(10): 2155-2164. DOI:10.1111/maps.13115.
  4. Lehmann E, Mannes D, Kaestner A, Grünzweig C. Recent applications of neutron imaging methods. Phys Procedia 2017; 88: 5-12. DOI: 10.1016/j.phpro.2017.06.055.
  5. Vontobel P, Lehmann EH, Hassanein R, Frei G. Neutron tomography: Method and applications. Phys B: Condens Matter 2006; 385-386: 475-480. DOI: 10.1016/j.physb.2006.05.252.
  6. Schillinger B, Lehmann E, Vontobel P. 3D neutron computed tomography: requirements and applications. Phys B: Condens Matter 2000; 276-278: 59-62. DOI: 10.1016/s0921-4526(99)01254-5.
  7. Masschaele B, Dierick M, Van Hoorebeke L, Jacobs P, Vlassenbroeck J, Cnudde V. Neutron CT enhancement by iterative de-blurring of neutron transmission images. Nucl Instrum Methods Phys Res Section A: Accel Spectrom Detect Assoc Equip 2005; 542(1-3): 361-366. DOI: 10.1016/j.nima.2005.01.162.
  8. Baechler S, Kardjilov N, Dierick M, Jolie J, Kühne G, Lehmann E, Materna T. New features in cold neutron radiography and tomography: Part I: thinner scintillators and a neutron velocity selector to improve the spatial resolution. Nucl Instrum Methods Phys Res Section A: Accel Spectrom Detect Assoc Equip 2002: 491(3): 481-491. DOI: 10.1016/s0168-9002(02)01238-x.
  9. Williams SH, Hilger A, Kardjilov N, Manke I, Strobl M, Douissard PA, Martin T, Riesemeier H, Banhart J. Detection system for microimaging with neutrons. J Instrum 2012; 7(2): P02014. DOI: 10.1088/1748-0221/7/02/P02014.
  10. Smith SW. The scientist and engineer's guide to digital Signal processing. San Diego: California Technical Publishing; 1999. ISBN: 978-0966017632.
  11. Datta A, Hawari AI. Performance evaluation in transmission neutron tomography using Geant4. Proc IEEE Nuclear Science Symposium and Medical Imaging Conf (NSS/MIC) 2017: 1-6. DOI: 10.1109/NSSMIC.2017.8532680.
  12. Hassanein R, Lehmann E, Vontobel P. Methods of scattering corrections for quantitative neutron radiography. Nucl Instrum Methods Phys Res Section A: Accel Spectrom Detect Assoc Equip 2005; 542(1-3): 353-360. DOI: 10.1016/j.nima.2005.01.161.
  13. Hassanein R, de Beer F, Kardjilov N, Lehmann E. Scattering correction algorithm for neutron radiography and tomography tested at facilities with different beam characteristics. Phys B: Condens Matter 2006; 385-386: 1194-1196. DOI: 10.1016/j.physb.2006.05.406.
  14. Kaestner AP, Trtik P, Zarebanadkouki M, Kazantsev D, Snehota M, Dobson KJ, Lehmann EH. Recent developments in neutron imaging with applications for porous media research. Solid Earth 2016; 7(5): 1281-1292. DOI: 10.5194/se-7-1281-2016.
  15. Zhang P, Wittmann FH, Lura P, Müller HS, Han S, Zhao T. Application of neutron imaging to investigate fundamental aspects of durability of cement-based materials: A review. Cem Concr Res 2018; 108: 152-166. DOI: 10.1016/j.cemconres.2018.03.003.
  16. Kichanov SE, Nazarov KM, Kozlenko DP, Balasoiu M, Nicu M, Ionascu L, Dragolici AC, Dragolici F, Savenko BN. Neutron tomography studies of cement-based materials used for radioactive waste conditioning. Rom J Phys 2019; 62(803): 9.
  17. Zel I, Kenessarin M, Kichanov S, Nazarov K, Bǎlǎșoiu M, Kozlenko D. Pore segmentation techniques for low-resolution data: Application to the neutron tomography data of cement materials. J Imaging 2022; 8(9): 242. DOI: 10.3390/jimaging8090242.
  18. Van Aarle W, Palenstijn WJ, De Beenhouwer J, Altantzis T, Bals S, Batenburg KJ, Sijbers J. The ASTRA Toolbox: A platform for advanced algorithm development in electron tomography. Ultramicroscopy 2015; 157: 35-47. DOI: 10.1016/j.ultramic.2015.05.002.
  19. Van Aarle W, Palenstijn WJ, Cant J, Janssens E, Bleichrodt F, Dabravolski A, de Beenhouwer J, K. Batenburg J, Sijbers J. Fast and flexible X-ray tomography using the ASTRA toolbox. Opt Express 2016; 24(22): 25129-25147. DOI: 10.1364/oe.24.025129.
  20. Palenstijn WJ, Bédorf J, Sijbers J, Batenburg KJ. A distributed ASTRA toolbox. Adv Struct Chem Imaging 2016; 2: 19. DOI: 10.1186/s40679-016-0032-z.
  21. Lange C, Bernt N. Neutron imaging at the low flux training and research reactor AKR-2. Nucl Instrum Methods Phys Res Section A: Accel Spectrom Detect Assoc Equip 2019; 941: 162292. DOI: 10.1016/j.nima.2019.06.033.
  22. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012; 9(7): 671-675. DOI: 10.1038/nmeth.2089.
  23. Kozlenko DP, Kichanov SE, Lukin EV, Rutkauskas AV, Belushkin AV, Bokuchava GD, Savenko BN. Neutron radiography and tomography facility at IBR-2 reactor. Phys Part Nucl Lett 2016; 13(3): 346-351. DOI: 10.1134/s1547477116030146.
  24. Nazarov KM, Muhametuly B, Kenzhin EA, Kichanov SE, Kozlenko DP, Lukin EV, Shaimerdenov AA. New neutron radiography and tomography facility TITAN at the WWR-K reactor. Nucl Instrum Methods Phys Res Section A: Accel Spectrom Detect Assoc Equip 2020; 982: 164572. DOI: 10.1016/j.nima.2020.164572.
  25. Grünauer F. Design, optimization, and implementation of the new neutron radiography facility at FRM-II. The thesis for the doctor of natural sciences. München; 2005.
  26. Shepp LA, Hilal SK, Schulz RA. The tuning fork artifact in computerized tomography. Comput Graph Image Process 1979; 10(3): 246-255. DOI: 10.1016/0146-664x(79)90004-2.
  27. Wadell H. Volume, shape, and roundness of rock particles. J Geol 1932, 40(5): 443-451. DOI: 10.1086/623964.
  28. Cha BK, Lee Y, Kim K. Development of adaptive point-spread function estimation method in various scintillation detector thickness for X-ray imaging. Sensors 2023; 23(19): 8185. DOI: 10.3390/s23198185.
  29. Saito Y, Ito D. 3D velocity vector measurements in a liquid-metal using unsharpness in neutron transmission images. Mater Res Proc 2020; 15: 281-286. DOI: 10.21741/9781644900574-44.
  30. Boillat P, Carminati C, Schmid F, Grünzweig C, Hovind J, Kaestner A, Mannes D, Morgano M, Siegwart M, Trtik P, Vontobel P, Lehmann EH. Chasing quantitative biases in neutron imaging with scintillator-camera detectors: a practical method with black body grids. Opt Express 2018; 26(12): 15769-15784. DOI: 10.1364/OE.26.015769.
  31. Raventos M, Harti RP, Lehmann E, Grünzweig C. A method for neutron scattering quantification and correction applied to neutron imaging. Phys Procedia 2017; 88: 275-281. DOI: 10.1016/j.phpro.2017.06.038.
  32. Wonho Oh, Lindquist B. Image thresholding by indicator kriging. IEEE Trans Pattern Anal Mach Intell 1999; 21(7): 590-602. DOI: 10.1109/34.777370.
  33. Hapca SM, Houston AN, Otten W, Baveye PC. New local thresholding method for soil images by minimizing grayscale intra-class variance. Vadose Zone J 2013; 12(3): 1-13. DOI: 10.2136/vzj2012.0172.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20