(49-4) 10 * << * >> * Russian * English * Content * All Issues

Analysis of video data from an unmanned aerial vehicle based on a structural similarity index
P.A. Lyakhov 1,2, A.R. Orazaev 1

North-Caucasus Federal University,
355017, Stavropol, Russia, Pushkin street, 1;
North-Caucasus Center for Mathematical Research,
355017, Stavropol, Russia, Pushkin street, 1

 PDF, 2173 kB

DOI: 10.18287/2412-6179-CO-1569

Pages: 624-633.

Full text of article: Russian language.

Abstract:
The article proposes a metric for the analysis of video data recorded by an unmanned aerial vehicle that uses a structural similarity index for evaluation. The metric consists in comparing frames in terms of brightness, contrast and pixel structure and a subsequent assessment of the video frame state. A comparative analysis of the proposed and currently employed metrics was carried out. The research included simulations on analog and digital video data at different frame rates. The results showed that the developed metric successfully detects delays, frame distortions and dynamic changes in a video scene. The proposed metric can find a wide range of applications of unmanned aerial vehicles in applied areas: construction, agriculture, geology and cartography.

Keywords:
structural similarity index measure, digital image processing, image quality assessment, unmanned aerial vehicle, video data analysis.

Citation:
Lyakhov PA, Orazaev AR. Analysis of video data from an unmanned aerial vehicle based on a structural similarity index. Computer Optics 2025; 49(4): 624-633. DOI: 10.18287/2412-6179-CO-1569.

Acknowledgements:
The work was financially supported by the Russian Science Foundation under project # 23-71-10013.

References:

  1. Jiménez-Jiménez SI, Ojeda-Bustamante W, Marcial-Pablo MDJ, Enciso J. Digital terrain models generated with low-cost UAV photogrammetry: Methodology and accuracy. ISPRS Int J Geo Inf 2021; 10(5): 285. DOI: 10.3390/ijgi10050285.
  2. Reinoso JF, Gonçalves JE, Pereira C, Bleninger T. Cartography for civil engineering projects: photogrammetry supported by unmanned aerial vehicles. Iran J Sci Technol Trans Civ Eng 2018; 42: 91-96. DOI: 10.1007/s40996-017-0076-x.
  3. Freimuth H, König M. Planning and executing construction inspections with unmanned aerial vehicles. Autom Constr 2018; 96: 540-553. DOI: 10.1016/j.autcon.2018.10.016.
  4. Kataev MY, Kartashov EY, Avdeenko VD. Method for detecting road defects using images obtained from unmanned aerial vehicles. Computer Optics 2023; 47(3): 464-473. DOI: 10.18287/2412-6179-CO-1209.
  5. Zubarev YuN, Fomin DS, Chashchin AN, Zabolotnova MV. Use of uncleaned aircraft in agriculture [In Russian]. Bulletin of the Perm Federal Research Center 2019; 2: 47-51. DOI: 10.7242/2658-705X/2019.2.5.
  6. Ageev AM, Bondarev VG, Protsenko VV. Justification of the choice of radiation sources for a computer vision system in the problem of automatic landing of unmanned aerial vehicles. Computer Optics 2022; 46(2): 239-245. DOI: 10.18287/2412-6179-CO-875.
  7. Huang D, Cui M, Zhang G, Chu X, Lin F. Bandwidth, power and trajectory optimization for UAV base station networks with backhaul and user QoS constraints. IEEE Access 2020; 8: 67625-67634. DOI: 10.1109/ACCESS.2020.2986075.
  8. Li B, Fei Z, Zhang Y. UAV communications for 5G and beyond: Recent advances and future trends. IEEE Internet of Things J 2018; 6(2): 2241-2263. DOI: 10.1109/JIOT.2018.2887086.
  9. Khawaja W, Guvenc I, Matolak DW, Fiebig U-C, Schneckenburger N. A survey of air-to-ground propagation channel modeling for unmanned aerial vehicles. IEEE Commun Surv Tutor 2019; 21(3): 2361-2391. DOI: 10.1109/COMST.2019.2915069.
  10. Saponaro M, Capolupo A, Tarantino E, Fratino U. Comparative analysis of different UAV-based photogrammetric processes to improve product accuracies. In Book: Misra S, Gervasi O, Murgante B, Stankova E, Korkhov V, Torre C, Rocha AMAC, Taniar D, Apduhan BO, Tarantino E, eds. Computational science and its applications – ICCSA 2019. 19th International Conference, Saint Petersburg, Russia, July 1–4, 2019, Proceedings, Part IV. Cham, Switzerland: Springer Nature Switzerland AG; 2019: 225-238. DOI: 10.1007/978-3-030-24305-0_18.
  11. Shakhatreh H, Sawalmeh AH, Al-Fuqaha A, et al. Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. IEEE Access 2019; 7: 48572-48634. DOI: 10.1109/ACCESS.2019.2909530.
  12. Kuang Q, Jin X, Zhao Q, Zhou B. Deep multimodality learning for UAV video aesthetic quality assessment. IEEE Trans Multimedia 2019; 22(10): 2623-2634. DOI: 10.1109/TMM.2019.2960656.
  13. Cavaliere D, Loia V, Senatore S. Towards an ontology design pattern for UAV video content analysis. IEEE Access 2019; 7: 105342-105353. DOI: 10.1109/ACCESS.2019.2932442.
  14. Fayyaz MA, Anjum A, Ziauddin S, Khan A, Sarfaraz A. An improved surveillance video forgery detection technique using sensor pattern noise and correlation of noise residues. Multim Tools Appl 2020; 79: 5767-5788. DOI: 10.1007/s11042-019-08236-2.
  15. Lin CC, Pankanti S, Ashour G, Porat D, Smith JR. Moving camera analytics: Emerging scenarios, challenges, and applications. IBM J Res Dev 2015; 59(2/3): 5:1-5:10. DOI: 10.1147/JRD.2015.239451.
  16. Wang Z, Bovik AC. Reduced- and no-reference image quality assessment. IEEE Signal Process Mag 2011; 28(6): 29-40. DOI: 10.1109/MSP.2011.942471.
  17. Hore A, Ziou D. Image quality metrics: PSNR vs. SSIM. 2010 20th Int Conf on Pattern Recognition 2010: 2366-2369. DOI: 10.1109/ICPR.2010.579.
  18. Sheikh HR, Bovik AC. Image information and visual quality. IEEE Trans Image Process 2006; 15(2): 430-444. DOI: 10.1109/TIP.2005.859378.
  19. Awad M, Khanna R. Support vector regression. In Book: Awad M, Khanna R. Efficient learning machines. Theories, concepts, and applications for engineers and system designers. Apress Media LLC; 2015: 67-80. DOI: 10.1007/978-1-4302-5990-9_4.
  20. Li Z, Aaron A, Katsavounidis I, Moorthy A, Manohara M. Toward a practical perceptual video quality metric. Netflix TechBlog. 2016. Source: <https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652>.
  21. Sara U, Akter M, Uddin MS. Image quality assessment through FSIM, SSIM, MSE and PSNR – a comparative study. J Comput Commun 2019; 7(3): 8-18. DOI: 10.4236/jcc.2019.73002.
  22. Bitbucket. CO_IQA. 2025. Source: <https://bitbucket.org/anzor_orazaev/co_iqa/src/main>.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20