(49-4) 15 * << * >> * Russian * English * Content * All Issues

Impact of data preprocessing and augmentation on tumor core segmentation using convolutional neural networks
N.S. Buravsky 1, E.Y. Kostyuchenko 1

Tomsk State University of Control Systems and Radioelectronics,
Prospekt Lenina 40, Tomsk, 634050, Russia

 PDF, 5025 kB

DOI: 10.18287/2412-6179-CO-1523

Pages: 667-673.

Full text of article: Russian language.

Abstract:
The relevance of detecting and treating breast cancer in the early stages remains high. In 2020, more than 65,000 new cases of breast cancer were registered, with an average annual growth rate being 2%. Every year, the number of recorded cases of breast cancer is leading in statistics of cancer diseases. The goal of the work is to evaluate the impact of preprocessing and augmentation methods on data sets for segmenting tumor nuclei in medical images under conditions of limited data volume. The experiments use one initial data set and eight variants of its pre-processing using image slicing algorithms to train two models of convolutional neural networks, U-net and U-net with the addition of a ResNet50 encoder. Assessing the quality of neural network training and kernel segmentation is performed using two target metrics, Dice and IoU, as well as by comparing the true location of kernel labels and segmented kernels using neural networks. As a result of training the models on pre-processed data sets, values of target metrics are obtained for the two models for each dataset, including the original one. For the U-net architecture, the Dice and IoU values are 0.742 and 0.5921, for the U-net_ResNet50 architecture they are 0.7458 and 0.5971.

Keywords:
preprocessing, augmentation, CNN, histopathological images, BreCAHAD.

Citation:
Buravsky NS, Kostyuchenko EY. Impact of data preprocessing and augmentation on tumor core segmentation using convolutional neural networks. Computer Optics 2025; 49(4): 667-673. DOI: 10.18287/2412-6179-CO-1523.

Acknowledgements:
The research was financially supported by the Ministry of Education and Science of the Russian Federation under research grants for higher education research laboratories, project FEWM- 2020-0042.

References:

  1. Zhang H, Qie Y. Applying deep learning to medical imaging: A review. Appl Sci 2023; 13(18): 10521. DOI: 10.3390/app131810521.
  2. Müller D, Kramer F. MIScnn: a framework for medical image segmentation with convolutional neural networks and deep learning. BMC Med Imaging 2021; 21(1): 12. DOI: 10.1186/s12880-020-00543-7.
  3. Aksac A, Demetrick DJ, Ozyer T, et al. BreCaHAD: a dataset for breast cancer histopathological annotation and diagnosis. BMC Res Notes 2019; 12: 82. DOI: 10.1186/s13104-019-4121-7.
  4. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. arXiv Preprint. 2015, May. Source: <https://arxiv.org/abs/1505.04597>. DOI:    10.48550/arXiv.1505.04597.
  5. RoboCraft. Image segmentation using a neural network: U-Net [In Russian]. 2025. Source:     <https://robocraft.ru/machinelearning/3671>.
  6. Banumathy D, Khalaf OI, Romero CAT, P. Raja V, Sharma DK. Breast calcifications and histopathological analysis on tumour detection by CNN. Comput Syst Sci Eng 2023; 44(1): 595-612. DOI: 10.32604/csse.2023.025611.
  7. Tomar NK, Thakur A, Jha D, Rauniyar A. Automatic polyp segmentation using U-Net-ResNet50. arXiv Preprint. 2025. Source: <https://arxiv.org/abs/2012.15247>. DOI: 10.48550/arXiv.2012.15247.
  8. Lu Z, Xu S, Shao W, Wu Y, Zhang J, Han Z, Feng Q, Huang K. Deep-learning-based characterization of tumor-infiltrating lymphocytes in breast cancers from histopathology images and multiomics data. JCO Clin Cancer Inform 2020; 4: 480-490. DOI: 10.1200/CCI.19.00126.
  9. Cheng HD, Cai X, Chen X, Hu L, Lou X. Computer-aided detection and classification of microcalcifications in mammograms: a survey. Pattern Recognit 2003; 36(12): 2967-2991. DOI: 10.1016/S0031-3203(03)00192-4.
  10. Hamad Y, Jasim OK, Simonov K. Evaluating of tissue germination and growth rate of ROI on implants of electron scanning microscopy images. ICIST '19: Proc 9th Int Conf on Information Systems and Technologies 2019: 1-7. DOI: 10.1145/3361570.336159.
  11. Vahadane A, Peng T, Sethi A, et al. Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans Med Imaging 2016; 35(8): 1962-1971. DOI: 10.1109/TMI.2016.2529665.
  12. Bouteldja N, Klinkhammer BM, Bülow RD, et al. Deep learning-based segmentation and quantification in experimental kidney histopathology. J Am Soc Nephrol 2021; 32(1): 52-68. DOI: 10.1681/ASN.2020050597.
  13. Sirinukunwattana K. и др. Gland segmentation in colon histology images: The glas challenge contest. Med Image Anal 2017; 35: 489-502. DOI: 10.1016/j.media.2016.08.008.
  14. Albarqouni S, Baur C, Achilles F, Belagiannis V, Demirci S, Navab N. AggNet: Deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans Med Imaging 2016; 35(5): 1313-1321. DOI: 10.1109/TMI.2016.2528120.
  15. Kowal M, Filipczuk P, Obuchowicz A, Korbicz J, Monczak R. Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images. Comput Biol Med 2013; 43(10): 1563-1572. DOI: 10.1016/j.compbiomed.2013.08.003.
  16. Shallu, Mehra R. Breast cancer histology images classification: Training from scratch or transfer learning? ICT Express 2018; 4(4): 247-254. DOI: 10.1016/j.icte.2018.10.007.
  17. Jha S, Son LH, Kumar R, Priyadarshini I, Smarandache F, Long HV. Neutrosophic image segmentation with Dice Coefficients. Measurement 2019; 134: 762-772. DOI: 10.1016/j.measurement.2018.11.006.
  18. Mohammed SAK, Razak MZA, Rahman AHA. 3D-DIoU: 3D distance intersection over union for multi-object tracking in point cloud. Sensors 2023; 23(7): 3390. DOI: 10.3390/s23073390.
  19. Ding K, Zhou M, Wang H, Gevaert O, Metaxas D, Zhang S. A large-scale synthetic pathological dataset for deep learning-enabled segmentation of breast cancer. Sci Data 2023; 10(1): 231. DOI: 10.1038/s41597-023-02125-y.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20