(49-5) 13 * << * >> * Russian * English * Content * All Issues
Improving the efficiency of CT image analysis using new texture radiomics features
F. Shariaty 1, V.A. Pavlov 1
1 Peter the Great St. Petersburg Polytechnic University,
Polytechnicheskaya 29, St. Petersburg, 195251, Russia
PDF, 1339 kB
DOI: 10.18287/2412-6179-CO-1581
Pages: 811-817.
Full text of article: Russian language.
Abstract:
This article discusses the development of feature extraction techniques from medical images to improve diagnosis and data analysis in oncology. Three new radiomic features for analyzing lung CT images are presented: adaptive texture contrast (ATC), directional texture uniformity (DTU), and co-occurrence of texture transitions (CTT). These features are specifically designed to improve the analysis of lung CT images, which can have a significant impact on the diagnostic accuracy and recognition of EGFR mutations. This article details the methods and algorithms used to create and test these features, and presents results demonstrating a 4% improvement in Accuracy and Precision for the task of detecting EGFR mutations compared to traditional methods. This study highlights the potential of integrating novel radiomic signatures into clinical practice for more accurate and efficient diagnosis of lung cancer.
Keywords:
radiomic features, CT images, classification.
Citation:
Shariaty F, Pavlov VА. Improving the efficiency of CT image analysis using new texture radiomics features. Computer Optics 2025; 49(5): 811-817. DOI: 10.18287/2412-6179-CO-1581.
Acknowledgements:
This research was funded by the Russian Science Foundation (RSF) under grant No. 24-25-00204. https://rscf.ru/en/project/24-25-00204/.
References:
- Pavlov VA, Zavjalov SV, Orooji M, Pervunina TM. Application of a texture appearance model for segmentation of lung nodules on computed tomography of the chest. Journal ofthe Russian Universities. Radioelectronics 2022; 25(3): 96-117.DOI: 10.32603/1993-8985-2022-25-3-96-117.
- Mahajan A, Kania V, Agarwal U, Ashtekar R, Shukla S, Patil V. M, Prabhash K. Deep-learning-based predictive imaging biomarker model for EGFR mutation status in non-small cell lung cancer from CT imaging. Cancers 2024; 16(6): 1130. DOI:10.3390/cancers16061130.
- Hou J, Shi H, Gao W, Lin P, Li B, Shi Y, Matveeva I, Zakharov V, Bratchenko I. The preliminary study of diabetic retinopathy detection based on intensity parameters with optical coherence tomography angiography. Computer Optics 2023; 47(4): 620-626.DOI: 10.18287/2412-6179-CO-1261.
- Li X, Chi X, Huang P, Liang Q, Liu J. Deep neural network for the prediction of KRAS, NRAS, and BRAF genotypes in left-sided colorectal cancer based on histopathologic images. ComputMedImagingGraph2024; 115: 102384. DOI: 10.1016/j.compmedimag.2024.102384.
- Shariaty F, Pavlov VA, Fedyashina SV, Serebrennikov NA. Integrating deep learning and explainable AI for non-invasive prediction of EGFR and KRAS mutations in NSCLC: A novel radiogenomic approach. 2024 V Int Conf on Neural Networks and Neurotechnologies (NeuroNT) 2024: 32-35. DOI: 10.1109/NeuroNT62606.2024.10585441.
- Shariaty F, Mousavi M, Moradi A, Oshnari MN, Navvabi S, Orooji M, Novikov B. Semi-automatic segmentation of COVID-19 infection in lung CT scans. In Book: Velichko E, Kapralova V, Karaseov P, Zavjalov S, Angueira P, Andreev S, eds. International youth conference on electronics, telecommunications and information technologies: Proceedings of the YETI 2021, St. Petersburg, Russia. Cham, Switzerland: Springer Nature Switzerland AG; 2022: 67-76. DOI: 10.1007/978-3-030-81119-8_7.
- Pavlov VA, Shariaty F, Orooji M, Velichko EN. Application of deep learning techniques for detection of COVID-19 using lung CT scans: model development and validation. In Book: Velichko E, Kapralova V, Karaseov P, Zavjalov S, Angueira P, Andreev S, eds. International youth conference on electronics, telecommunications and information technologies: Proceedings of the YETI 2021, St. Petersburg, Russia. Cham, Switzerland: Springer Nature Switzerland AG; 2022: 85-96. DOI: 10.1007/978-3-030-81119-8_9.
- Haralick R, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern 1973; 3(6): 610-621. DOI: 10.1109/TSMC.1973.4309314.
- Liu Q, Liu X. Feature extraction of human viruses microscopic images using gray level co-occurrence matrix. Int Confon Computer Sciences and Applications 2013: 619-622. DOI: 10.1109/CSA.2013.149.
- Huang W, et al. Arterial spin labeling images synthesis from sMRI using unbalanced deep discriminant learning. IEEE T MedImaging 2019; 38(10): 2338-2351. DOI: 10.1109/TMI.2019.2906677.
- Bakr S, Gevaert O, Echegaray S, Ayers K, Zhou M, Shafiq M, Zheng H, Benson JA, Zhang W, Leung AN, Kadoch M. A radiogenomic dataset of non-small cell lung cancer. Sci Data 2018; 5(1): 180202. DOI: 10.1038/sdata.2018.202.
- NSCLC Radiogenomics. 2024. Source: <https://www.cancerimagingarchive.net/collection/nsclc-radiogenomics/>.
- Peli E. Contrast in complex images. J Opt Soc Am A 1990; 7(10): 2032-2040. DOI: 10.1364/JOSAA.7.002032.
- Shariaty F, Caiqin H, Pavlov VA, Duan L, Zavyalov SV, Pervunina TM, Ying W. Integrating quantitative and convolutional features to enhance the efficiency of pathology classification in CT imaging. Computing, Telecommunications and Control 2023; 16(4): 60-69. DOI: 10.18721/JCSTCS.16406.
- Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data. Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference (CSB2003) 2003: 523-528. DOI: 10.1109/CSB.2003.1227396.
- Sun L, Dong Y, Xu S, Feng X, Fan X. Predicting multi-gene mutation based on lung cancer CT images and Mut-SeResNet. ApplSci 2023; 13(3): 1921. DOI: 10.3390/app13031921.
- Zhang T, Xu Z, Liu G, Jiang B, de Bock GH, Groen HJ, Xie X. Simultaneous identification of EGFR, KRAS, ERBB2, and TP53 mutations in patients with non-small cell lung cancer by machine learning-derived three-dimensional radiomics. Cancers 2021; 13(8): 1814. DOI: 10.3390/cancers13081814.
- Dong Y, Hou L, Yang W, Han J, Wang J, Qiang Y, Yang X. Multi-channel multi-task deep learning for predicting EGFR and KRAS mutations of non-small cell lung cancer on CT images. QuantImagingMedSurg2021; 11(6). DOI: 10.21037/qims-20-600.
- Le NQK, Kha QH, Nguyen VH, Chen YC, Cheng SJ, Chen CY. Machine learning-based radiomics signatures for EGFR and KRAS mutations prediction in non-small-cell lung cancer. Int J MolSci 2021; 22(17): 9254. DOI: 10.3390/ijms22179254.
- Chaddad A, Desrosiers C, Toews M. Radiomic analysis of multi-contrast brain MRI for the prediction of survival in patients with glioblastoma multiforme. 2016 38th Annual Int Conf of the IEEE Engineering in Medicine and Biology Society (EMBC) 2016: 4035-4038. DOI: 10.1109/EMBC.2016.7591612.
- Pujadas ER, Raisi-Estabragh Z, Szabo L, McCracken C, Morcillo CI, Campello VM, Martín-Isla C, Atehortua AM, Vago H, Merkely B, Maurovich-Horvat P. Prediction of incident cardiovascular events using machine learning and CMR radiomics. EurRadiol 2023; 33(5): 3488-3500. DOI: 10.1007/s00330-022-09323-z.
- Lubner MG, Smith AD, Sandrasegaran K, Sahani DV, Pickhardt PJ. CT texture analysis: definitions, applications, biologic correlates, and challenges. Radiographics 2017; 37(5): 1483-1503. DOI: 10.1148/rg.2017170056.
- Yao Z, Dong Y, Wu G, Zhang Q, Yang D, Yu JH, Wang WP. Preoperative diagnosis and prediction of hepatocellular carcinoma: Radiomics analysis based on multi-modal ultrasound images. BMC Cancer 2018; 18: 1089. DOI: 10.1186/s12885-018-5003-4.
- Durmaz ES, Karabacak M, Ozkara BB, Kargın OA, Raimoglu U, Tokdil H, Durmaz E, Adaletli I. Radiomics-based machine learning models in STEMI: a promising tool for the prediction of major adverse cardiac events. EurRadiol 2023; 33(7):4611-20. DOI: 10.1007/s00330-023-09394-6.
- Choi Y, Jang J, Kim BS, Ahn KJ. Pretreatment MR-based radiomics in patients with glioblastoma: A systematic review and meta-analysis of prognostic endpoints. Eur J Radiol 2023; 168: 111130. DOI: 10.1016/j.ejrad.2023.111130.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20