(49-5) 17 * << * >> * Russian * English * Content * All Issues

High-fidelity compression of 3D mesh animation data for humorous cartoon animation production
Y. Li 1

Hunan Vocational College of Technology,
Jingwan Road, Yuhua District, No. 784, Changsha, 410000, China

 PDF, 2144 kB

DOI: 10.18287/2412-6179-CO-1530

Pages: 844-852.

Full text of article: English language.

Abstract:
Humorous cartoon animation with its easy and pleasant style and colorful methods of expression, has become an important entertainment way for people to find relaxation and laughter in their busy lives. However, the data in the current humorous cartoon animation production is too complex. Therefore, the research proposes a new method based on high-fidelity compression algorithm, focusing on the special characteristics of 3D mesh animation data, and optimizing the compression from the two dimensions of time domain and space domain. The experimental results show that the proposed method exhibits higher compression ratio and rate, the average compression ratio reaches 2.55, and the compression rate reaches up to 65.34 Mb/s. It also exhibits lower mean squared deviation and high structural similarity index, the former is 1.56%, and the latter reaches up to 0.98. In the practical application, a compression effect of about 2:1 is achieved. Finally, in the volunteer rating of the produced humorous cartoon animation, the overall average score reaches 9.02. The study provides a new solution for the high-fidelity compression of 3D mesh animation data, which has the potential for practical application and is of great guiding significance for improving the efficiency and quality of animation production.

Keywords:
humor cartoon animation, high-fidelity compression, 3D mesh, animation data, time-space domain.

Citation:
Li Y. High-fidelity compression of 3D mesh animation data for humorous cartoon animation production. Computer Optics 2025; 49 (5): 844-852. DOI: 10.18287/2412-6179-CO-1530.

References:

  1. Zsila Á, Urbán R, Orosz G, Demetrovics Z. The association of animated sitcom viewing with humor styles and humor types. Humor 2021; 34(3): 393-409. DOI: 10.1515/humor-2020-0055.
  2. Nicholls C. Online humour, cartoons, videos, memes, jokes and laughter in the epoch of the coronavirus. Text matters: A journal of literature, Theory and Culture 2020, 10: 274-318. DOI: 10.18778/2083-2931.10.17.
  3. Demina OV. Linguistic and Stylistic means of satire construction in the animated series. RUDN J Lang Stud Semiot Semant 2021; 12(4): 1124-1146. DOI: 10.22363/2313-2299-2021-12-4-1124-1146.
  4. Carbajal-Carrera B, Sanchez-Castro O. The role of secondary incongruities in cartoon appreciation. Eur J Humour Res 2020; 8(2): 25-48. DOI: 10.7592/EJHR2020.8.2.Carbajal-Carrera.
  5. Preethi P, Mamatha HR. Region-Based convolutional neural network for segmenting text in Epigraphical images. Artifi Intell Appl 2023; 1(2): 119-127. DOI: 10.47852/bonviewAIA2202293.
  6. Deng L, Li G, Han S, Shi L, Xie, Y. Model compression and hardware acceleration for neural networks: A comprehensive survey. Proc IEEE 2020; 108(4): 485-532. DOI: 10.1109/JPROC.2020.2976475.
  7. Ye H, Kwan KC, Su W, Fu H. ARAnimator: in-situ character animation in mobile AR with user-defined motion gestures. ACM Trans Graph 2020; 39(4): 83. DOI: 10.1145/3386569.3392404.
  8. Arshad MR, Yoon KH, Manaf AAA, Ghazali MA. Physical rigging procedures based on character type and design in 3D animation. Int J Recent Technol Eng 2019; 8(3): 4138-4147. DOI: 10.35940/ijrte.C5484.098319.
  9. Paier W, Hilsmann A, Eisert P. Interactive facial animation with deep neural networks. IET Comput Vis 2020; 14(6): 359-369. DOI: 10.1049/iet-cvi.2019.0790.
  10. Li L, Li T. Animation of virtual medical system under the background of virtual reality technology. Comput Intell 2022, 38(1): 88-105. DOI: 10.1111/coin.12446.
  11. Cavigelli L, Rutishauser G, Benini L. EBPC: Extended bit-plane compression for deep neural network inference and training accelerators. IEEE J Emerg Sel Top Circuits Syst 2019; 9(4): 723-734. DOI: 10.1109/JETCAS.2019.2950093.
  12. Sun X, Ma H, Sun Y, Liu M. A novel point cloud compression algorithm based on clustering. IEEE Robot Autom Lett 2019, 4(2): 2132-2139. DOI: 10.1109/LRA.2019.2900747.
  13. Messaoudi A, Benchabane F, Srairi K. DCT-based color image compression algorithm using adaptive block scanning. Signal Image Video Process 2019; 13(7): 1441-1449. DOI: 10.1007/s11760-019-01492-7.
  14. Uthayakumar J, Elhoseny M, Shankar K. Highly reliable and low-complexity image compression scheme using neighborhood correlation sequence algorithm in WSN. IEEE Trans Reliab 2020; 69(4): 1398-1423. DOI: 10.1109/TR.2020.2972567.
  15. Jha CK, Kolekar MH. Empirical mode decomposition and wavelet transform based ECG data compression scheme. Irbm 2021, 42(1): 65-72. DOI: 10.1016/j.irbm.2020.05.008.
  16. Schwarz H, Coban M, Karczewicz M, Chuang TD., Bossen F, Alshin A, Lainema J, Helmrich CR, Wiegand T. Quantization and entropy coding in the versatile video coding (VVC) standard. IEEE Trans Circ Syst Video Tech 2021; 31(10): 3891-3906. DOI: 10.1109/TCSVT.2021.3072202.
  17. Wu Y, Li X, Zhang Z, Jin X, Chen Z. Learned block-based hybrid image compression. IEEE Trans Circ Syst Video Tech 2021; 32(6): 3978-3990. DOI: 10.1109/TCSVT.2021.3119660.
  18. Zou W, Zhou J, Chen J, Yang F. Texture coordinate prediction using structural information for MPEG V-DMC. IEEE Int Conf on Multimedia and Expo Workshops 2023; 1(1): 128-133. DOI: 10.1109/ICMEW59549.2023.00029.
  19. Nousias S, Arvanitis G, Lalos A, Moustakas K. Deep saliency mapping for 3D meshes and applications. ACM Trans Multimed Comput Commun Appl 2023; 19(2): 71. DOI: 10.1145/3550073.
  20. Kumar SN, Fred AL, Kumar HA, Varghese PS. Lossless compression of CT images by an improved prediction scheme using least square algorithm. Circuits Syst Signal Process 2020; 39(2): 522-542. DOI: 10.1007/s00034-019-01152-8.
  21. Zhang X, Kwong S, Kuo CCJ. Data-driven transform-based compressed image quality assessment. IEEE Trans Circ Syst Video Tech 2020; 31(9): 3352-3365. DOI: 10.1109/TCSVT.2020.3041639.
  22. Liu H, Lu M, Ma Z, Wang, F, Xie Z, Cao X, Wang Y. Neural video coding using multiscale motion compensation and spatiotemporal context model. IEEE Trans Circ Syst Video Tech 2020; 31(8): 3182-3196. DOI: 10.1109/TCSVT.2020.3035680.
  23. Nayak D, Ray KB, Kar T, Kwan C. A novel saliency based image compression algorithm using low complexity block truncation coding. Multimed Tools Appl 2023; 82(30): 47367-47385. DOI: 10.1007/s11042-023-15694-2.
  24. Goswami P. A survey of modeling, rendering and animation of clouds in computer graphics. Vis Comput 2021; 37(7): 1931-1948. DOI: 10.1007/s00371-020-01953-y.
  25. Paruchuri ST, Guo J, Kurdila A. Kernel center adaptation in the reproducing kernel hilbert space embedding method. Int J Adapt Control Signal Process 2022; 36(7): 1562-1583. DOI: 10.1002/acs.3407.
  26. Gopalakrishnan B, Singh AK, Krishna KM, Manocha D. Solving chance-constrained optimization under nonparametric uncertainty through hilbert space embedding. IEEE Trans Control Syst Technol 2021; 30(3): 901-916. DOI: 10.1109/TCST.2021.3091315.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20