Interferometric testing of steep cylindrical surfaces with on-axis CGHs
A.G. Poleshchuk, R.K. Nasyrov, J.-M. Asfour

 

Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk, Russia,
Dioptic GmbH, Weinheim, Germany

Full text of article: English language.

 PDF

Abstract:
We present a new approach for testing cylindrical optical surfaces using a Null-test. We suggest using a Computer Generated Hologram (CGH) in combination with a Transmission Sphere. It is shown that in such an optical layout the period of the diffractive structure is larger than in the case of a conventional scheme using a collimated beam. Therefore, this kind of hologram enables the test of cylinder surfaces with higher numerical apertures.

Keywords:
diffractive optical elements, computer-generated hologram (CGH), laser writing, methods for DOE fabrication, cylinder metrology surface testing.

Citation:
Poleshchuk AG, Nasyrov RK, Asfour J-M. Interferometric testing of steep cylindrical surfaces with on-axis CGHs. Computer Optics 2016; 40(5): 625-628. DOI: 10.18287/2412-6179-2016-40-5-625-628.

References:

  1. Kazanskiy NL, Kharitonov SI, Khonina SN. Simulation of a hyperspectrometer based on linear spectral filters using vector Bessel beams. Computer Optics 2014; 38(4); 770-776.
  2. Kazanskiy NL, Khonina SN, Skidanov RV, Morozov AA, Kharitonov SI, Volotovskiy SG. Formation of images using multilevel diffractive lens. Computer Optics 2014; 38(3); 425-434.
  3. Kuechel M F. Interferometric Measurement of Rotationally Symmetric Aspheric Surfaces. Optatec 2007; TDO4-25.
  4. Greivenkamp JE, Lowman AE, Palum RJ. Sub-Nyquist interferometry: implementation and measurement capability. Opt Eng 1996; 35(10); 2962-2969.
  5. Fleig JF, Murphy PE. Measuring a Nanometer-Precision Asphere with Subaperture Stitching Interferometry, in Frontiers in Optics. OSA Technical Digest (CD) (Optical Society of America, 2006); paper OFTuA6.
  6. Golub MA, Karpeev SV, Sisakyan IN, Soifer VA. Experimental investigation of the wavefronts formed by computer optics components. Quantum Electronics 1989; 19(12), 1664-1665.
  7. Arnold SM, Maxey LC, Rogers JE, Yoder RC. Figure metrology of deep general aspherics using a conventional interferometer with CGH null. Proc SPIE 1995; 2536: 106. DOI: 10.1117/12.218413.
  8. Aslanov ER, Doskolovich LL, Moiseev MA, Bezus EA, Kazanskiy NL. Design of an optical element forming an axial line segment for efficient LED lighting systems. Optics Express 2013; 21(23); 28651-28656. DOI: 10.1364/OE.21.028651.
  9. Malacara D, ed. Optical shop testing. 3rd ed. Hoboken, New Jersey: John Wiley and Sons, Inc; 2007. ISBN 978-0-471-48404-2.
  10. Poleshchuk AG, Churin EG, Koronkevich VP, Korolkov VP, Kharissov AA, Cherkashin VV, Kiryanov VP, Kiryanov AV, Kokarev SA, Verhoglyad AG. Polar coordinate laser pattern generator for fabrication of diffractive optical elements with arbitrary structure. Appl Opt 1999; 38(8); 1295-1301.
  11. Koronkevich VP, Korolkov VP, Poleshchuk AG. Laser technologies in diffractive optics. Proc SPIE 1999; 3733: 417-427. DOI: 10.1117/12.340090.
  12. Veiko VP, Korolkov VI, Poleshchuk AG, Sametov AR, Shakhno EA, Yarchuk MV. Study of the spatial resolution of laser thermochemical technology for recording diffraction microstructures. Quantum Electronics 2011; 41(7); 631-636.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20