Automatic target recognition for low-count terahertz images
V.E. Antsiperov

 

Kotel’nikov Institute of Radioengineering and Electronics, Moscow, Russia, Russian Academy of Sciences

Full text of article: English language.

 PDF

Abstract:

The paper presents the results of developing an algorithm for automatic target recognition in broadband (0.1-10) terahertz images. Due to the physical properties of terahertz radiation and associated hardware, such images have low contrast, low signal-to-noise ratio and low resolution – i.e. all the characteristics of a low-count images. Therefore, standard recognition algorithms designed for conventional images work poorly or are not suitable at all for the problem considered. We have developed a fundamentally different approach based on clustering 2D point clouds in accordance with a set of predefined patterns. As a result, we reduce the problem of target recognition to the problem of maximizing the image data likelihood with respect to the classes of model objects up to the size and position. The resulting recognition algorithm has a structure close to that of the well-known EM algorithm; its formal scheme is at the end of the paper.

Keywords:
automatic target recognition, concealed objects detection, low-count images, THz imaging, EM-algorithm, classification, image recognition.

Citation:
Antsiperov VE. Automatic target recognition algorithm for low-count terahertz images. Computer Optics 2016; 40(5): 746-751. DOI: 10.18287/2412-6179-2016-40-5-746-751.

References:

  1. Kowalski M, Kastek M, Walczakowski M, Palka N, Szustakowski M. Passive imaging of concealed objects in terahertz and long-wavelength infrared. Applied Optics 2015; 54(13): 3826-3833.
  2. Armstrong CM. The truth about terahertz. IEEE Spectrum 2012; 49(9): 36-41. DOI: 10.1109/mspec.2012.6281131.
  3. Luukanen A, Appleby R, Kemp M, Salmon N. Millimeter-Wave and Terahertz Imaging in Security Applications. Terahertz Spectroscopy and Imaging. Springer Series in Optical Sciences 2013; 171: 491-520. DOI: 10.1007/978-3-642-29564-5_19.
  4. Kowalski M, Mariusz K. Comparative studies of passive imaging in terahertz and mid-wavelength infrared ranges for object detection. IEEE Transactions on Information Forensics and Security 2016; 11(9): 2028-2035. DOI: 10.1109/TIFS.2016.2571260.
  5. Corsi C, Sizov F, eds. THz and Security Applications: Detectors, Sources and Associated Electronics for THz Applications. Springer Science+Business Media Dordrecht; 2014. ISBN 978-94-017-8827-4. DOI: 10.1007/978-94-017-8828-1.
  6. Trontelj J, Sesek A. Electronic terahertz imaging for security applications. SPIE Newsroom 2016. DOI: 10.1117/2.1201009.001234.
  7. Garbacz P. Terahertz imaging – principles, techniques, benefits, and limitations. Problemy Eksploatacji – Maintenance Problems 2016; 1: 81-92.
  8. Trofimov VA, Trofimov VV. New way for both quality enhancement of THz images and detection of concealed objects. Proc SPIE 2015; 9585: 95850R. DOI: 10.1117/12.2189299.
  9. Trofimov VA, Trofimov VV, Shestakov I, Blednov R. Concealed object detection using the passive THz image without its viewing. Proc SPIE 2016; 9830: 98300E. DOI: 10.1117/12.2225170.
  10. Antsiperov V, Mansurova T. Low-contrast objects detection with low signal/noise ratio in the low-count terahertz images [In Russian]. IX All-Russian Scientific and Technical Conference Radar and radio, Moscow, 2015: 311-315.
  11. Dudgeon DE, Lacoss RT. An Overview of Automatic Target Recognition. Lincoln Laboratory Journal 1993; 6(1): 3-10.
  12. Shen X, Dietlein CR, Meyer FG. Detection and Segmentation of Concealed Objects in Terahertz Images. IEEE Trans Image Process 2008; 17(12): 2465-2475. DOI: 10.1109/TIP.2008.2006662.
  13. Evseev O, Nikitov S, Antsiperov V. Parametric 3D Reconstruction of the Distribution Density of Point Objects. Journal of Communications Technology and Electronics 2014; 59(3): 259-268. DOI: 10.1134/S1064226914030048.
  14. McLachlan GJ, Peel D. Finite Mixture Models. New York, Chichester: Wiley & Sons, Inc; 2000. ISBN 9780471006268. DOI: 10.1002/0471721182.
  15. Gupta MR, Chen Y. Theory and Use of the EM Algorithm. Foundations and Trends in Signal Processing 2011; 4(3): 223-296. DOI: 10.1561/2000000034.
  16. Nock R, Nielsen F. On Weighting Clustering. IEEE Trans on Pattern Analysis and Machine Intelligence 2006; 28(8): 1223-1235. DOI: 10.1109/TPAMI.2006.168.
  17. Kemp MC, Taday PF, Cole BE, Cluff JA, Fitzgerald AJ, Tribe WR. Security applications of terahertz technology. Proc SPIE 2003; 5070: 44-52.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20