THEORY OF COHERENT FOCUSERS

V. A. Danilov, Â. Å. Kinber, A. V. Shishlov

Abstract:
Two types of focusers are compared—one having the previously employed "integral" definition of intensity, and the other using a local definition and referred to as a coherent focuser. The solution of both problems reduces to integration of ordinary differential equations.

References:

  1. M. A. Golub, S. V. Karpeev, A. M. Prokhorov, I. N. Sisakyan and V A. Soifer. Pisma v ZhTF 7, 618 (1981).
  2. V. A. Danilov, V. V. Popov, A. M. Prokhorov, D. M. Sagatelyan, E. V. Sisakyan, I. N. Sisakyan and V. A. Soifer. Preprint FIAN, No. 69. Moscow (1983).
  3. A. V. Goncharskii, V. A. Danilov, V. V. Popov, A. M. Prokhorov, I. N. Sisakyan, V. A. Soifer and V. V. Stepanov. DAN SSSR 273, 605 (1983).
  4. A. A. Minakov. Radiotekhnika i Elektronika 30, 653 (1985).
  5. V. A. Borovnikov and Â. Å. Kinber. Geometrical Theory of Diffraction. Svyaz', Moscow (1978).
  6. M. V. Fedoryuk. The Saddle Point Method. Nauka, Moscow (1977).
  7. A. V. Goncharskii and V. V. Stepanov. DAN SSSR 279, 788 (1984). 8.  Â. Å. Kinber. Preprint IRE AN SSSR, No. 38 (410). Moscow (1984).


© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20