THEORY OF COHERENT FOCUSERS
V. A. Danilov, Â. Å. Kinber, A. V. Shishlov
Abstract:
Two types of focusers are compared—one having the previously employed "integral" definition of intensity, and the other using a local definition and referred to as a coherent focuser. The solution of both problems reduces to integration of ordinary differential equations.
References:
- M. A. Golub, S. V. Karpeev, A. M. Prokhorov, I. N. Sisakyan and V A. Soifer. Pisma v ZhTF 7, 618 (1981).
- V. A. Danilov, V. V. Popov, A. M. Prokhorov, D. M. Sagatelyan, E. V. Sisakyan, I. N. Sisakyan and V. A. Soifer. Preprint FIAN, No. 69. Moscow (1983).
- A. V. Goncharskii, V. A. Danilov, V. V. Popov, A. M. Prokhorov, I. N. Sisakyan, V. A. Soifer and V. V. Stepanov. DAN SSSR 273, 605 (1983).
- A. A. Minakov. Radiotekhnika i Elektronika 30, 653 (1985).
- V. A. Borovnikov and Â. Å. Kinber. Geometrical Theory of Diffraction. Svyaz', Moscow (1978).
- M. V. Fedoryuk. The Saddle Point Method. Nauka, Moscow (1977).
- A. V. Goncharskii and V. V. Stepanov. DAN SSSR 279, 788 (1984).
8. Â. Å. Kinber. Preprint IRE AN SSSR, No. 38 (410). Moscow (1984).
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846)
332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20