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ITERATIVE-PHASE METHOD FOR DIFFRACTIVELY LEVELLING THE GAUSS BEAM
INTENSITY

1. Introduction

The demand for optical elements capable of
levelling the Gaussian intensity distribution exists in
such problems of optical data processing as laser-
based superficial strengthening and laser projection
printing. The diffraction redestribution of the light
beam intensity can be performed by means of so
called focusators of laser radiation [1,2]. Methods
of geometrical optics make it possible to derive
[2,3] analytical relationships for a focusator phase
which is the smooth function of two variables.
However, such an approach ignores diffraction
effects that can result in low accurace in formation
of the required focusator-produced intensity
distribution. On the other hand, in computing a
phase of kinoforms, an iterative algorithm [4-6] is
employed, which takes into account diffraction
effects taking place under the light propagation.
Making use of the adaptive correction procedure
[7,8] allows this algorithm to be successfully applied
to compute the phase of focusators.

This paper deals with numerical comparison
of performances of focusators from the Gaussian
beam into the uniform intensity square computed
by geometrical-optical with those computed by
iterative methods.

2. Focusing from the Gaussian beam into a
rectangle

As it has been shown [9], for the focusator

that form the rectangular intensity-uniform
distribution as
1, |x|<d,, |y|<d,
l(xy)=
0, |x|>a,, |y]>d,

from the plane beam with the Gaussian profile of
the intensity distribution
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fo(u.v)=!cex4—” : }
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we can (given a lens located immediately adjacent
to the focusator) find its phase function in the form
of the sum

(U v)=0,(U)+,(v)

with its terms satisfying the set of two simultaneous
equations
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dx (V)

du I(x) (1)
i -1.00(Y)
x=u+fk a

where fis the focal length of the lens in whose focal
plane the light rectangle is formed, k is the
wavenumber of light, (x,v) and (x,y) are the
coordinates in the planes of the focusator and of
the Fourier spectrum, respectively, 2d,, and 24, are
the measures of the rectangle and ¢ is the para-
meter of the Gaussian beam.

The first equation in the system (1) sets the
equality of the density of light energy of a 1D
focusator to the density in the corresponding areas
of the straight-light segment. The second equation
in the system (1) describes the stationary points in
the paraxial approximation.

The discrete variant of the solution of the
system (1) can be written as follows

mn=In(1 0)[M,{6nN “tort(BnN ")+
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where erf(x)=2n ’fexp(—rz)dt ,

0
m=0,£1,42,..,£N/2, n=0,+1,£2, .., £N/2,

M =nN (6/In10)7", M =nN (6yIn10)"", M, and M,
are the number of the minimum diffraction spots
that fall into the rectangle with the measures N, x N,
In this case, the square aperture of the focusator
measured NxN equals to the measure of the square,
60, and the Gaussian collimated beam that illumi-

nates the focusator produces the light distribution
as

o =6XP[-36N 2(n?+ m?)| (3)

In section 4 we employ the phase (2) to
numerically simulate the operation of a geometri-
cal-optical focusator.

3. Adaptive-iterative computation
of focusators

Following [7,8], let us briefly describe how the
iterative algorithms can apply to computing the



focusators as kinoforms. Let us proceed from the
preset complex amplitude A(«) of the illuminating
beam and the required intensity distribution /(x) in
a focal plane of the lens. The complex amplitude
Hx) in a focal plane is related to the complex
amplitude

f(u)=a(u)exp[idp(u)]

immediately behind the focusator through the
Fourier transform

b
FAx)= [ f(u) explikxu,/fdx,
-b

where 20 is the size of the focusator's aperture. The
focusator’s equation takes the form

|F()[2=1(x) 4)

To find iterative solution of Eq.(4) with
respect to the phase ¢(u/), one should perform some
preliminary estimate of the phase ¢,(u) followed by
the computation of the complex light amplitude in
a focal plane. In this case the complex amplitude
F,(x) calculated in the n-th step of iterations is
replaced by the function F°(x) according to the
rule

VI F () [F ()|, |x|<d

)
x|>d

Fa(x)=

a?Fx)

where [ (x)=(1+a)l(x)-a|F,(x)|?, 1(x) is the
required intensity distribution within the interval
[-d,d] of a focal plane, a is the parameter that
controls the rate of convergence of the calculated
intensity to the required one. For «=0, the replace-
ment (5) changes to the standard replacement in
the Gerchberg-Saxton algorithm [5].

The amplitude of light in the plane of focusa-
tor /. (u) is calculated with the help of the inverse
Fourier transform and is replaced by the function
/°(x) according to the rule

AW (W], |ulsb
fa(x) { 5 ' |upb
In contrast to the algorithms of the conditional
gradient [10], the « parameter is here introduced
directly into the intensity function.

The rate of convergence of the intensity
| F.(x)|? to the required one /(x) is checked by the
root-mean-square deviation

(6)
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Besides, a new parameter e characterizing the
energy efficiency of focusing is introduced:
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In the next section we apply the phase derived from
Eqs. (4)-(6) to numerically simulating the operation
of diffractive focusators.

4. Numerical results

We examine the
focusator into a square
that comprises 32x32
pixels and measures 10
minimum  diffraction
spots. For a focusator
that focuses from the
Gaussian  collimated
beam into a square, the
phase deduced from
Eq.(2) on the net of Fig. I Geometrical-optical phase
pixels 256x256 and og the focusator into a square.
taken to the modulus 2 represents the set of rings
(lines of equal phase)
changing to the lines of
the square perimeter
(Fig.1). Figure 2 illus-
trates the light intensity
distribution in the lens
focal plane calculated
as the Fourier trans-
form of the amplitude

fon=V lomn@'¢mn

where [ is taken

Omn

from Eq. (3) and ¢,
from Eq. (2). The root-mean-square deviation of
the obtained distribution from the uniform one
amounted to 5% and the efficiency was 91.6%.

To calculate the focusator that focuses the
Gaussian beam into the uniform intensity square,
as an initial phase estimate we have chosen the
geometrical-optical phase function described above
(Fig.1). The subsequent iterative calculation has
been conducted using three techniques. The first
approach to the calculation of the phase based on
the standard variant of the Gerchberg-Saxton
algorithm with the replacement (5), for a=0, yields,
at first, the increase of the error & in the first itera-
tion steps and then 1t gives the slow decrease of the
error (Fig.3a, curve 1). In this case during 10
iterations the error does not diminish below 13%
though the efficiency e grows up to 98.9% (Fig.3b,
curve 1).

Fig.2 The intensity distribution
obtained fron the geometrical-
optical focusator in a lens focal
plane.
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Fig.3 The root-mean-square deviation (a) at the energy effi-
ciency (b) agains the number of iterations for different variants
of an iterative algorithm: Gerchberg-Saxton (1), combined (2),
and adaptive (3).

The second approach is combined: the first
three iterations are conducted with the replacement
(5) for =0, the remaining seven iterations for a=1
(Fig.3a, curve 2). This method after 10 iterations
results in formation of the square characterized by
the uniform intensity, with the error of 2.4% and
the efficiency of 96.4% (Fig.3b, curve 2). This way
1s seen to be more effective as compared with the
first approach, since it yields the decrease of the
error from 13% to 2% (by 6-fold) without essential
decrease in the efficiency.

Thethird method |
is purely adaptive, this
means that the repla-
cement (5), with a=1,
is performed in each

step of iteration ' A
(Fig.3a, curve 3). As ' ;
one can see in this & ;
case, the error decrea- N ﬁ

ses monotonously and
during 10 iterations it
becomes equal to 0.1%,
but the efficiency falls
to 92.2% (Fig.3b, cur-
ve 3). Figure 4 illustrates the phase of the focusator
to the modulus 2 x that has been calculated during
10 iterations on the basis of the third approach
from the geometrical-optical phase (2). First, one
can see that the use of the iterative algorithm does
not result in the essential change of the initial
phase. The pronounced changes of the phase

Fig.4 The phase of the focusator
into a square obtained after 10
iterations from the initial geo
metro-optical phase.
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(Fig.1) take place only
on the edges of the
focusator (Fig.4). Se-
cond, we can draw the
conclusion that the
adaptive iterative algo-
rithm based on the
replacement (5) for
a=1 makes it possible
to improve the geome-
trical-optical phase in
such a manner that the
error in the formation
of a light square reduces more than by an order,
with the efficiency almost unchanged.

For the aim of
comparison, there was
conducted another
numerical simulation
where we made use a
radius-random  phase
function (Fig.5) as the
initial approximation.
The phase shown in
Fig.6 was calculated
during 10 iterations.
The intensity distribu-
tion formed by the
focusator characterized
by such a phase is presented in Fig.7. The error and

Fig.5 The radius-random phase
chosen as the initial estimate for
iterations.

Fig.6 The phase of the focusator
into a square obtained after 10
iterations from the initial ran-
dom phase.

the efficiency were
equal 6=6.4% and

¢=80.8%, respectively.
Further iterations did
not produce the essen-
tial change in these
values. Data given
above show that the
iterative algorithm that
begins with the random
phase estimate, leads to
the non-regular struc-
ture of the focusator's
zones and results in the
accuracy and efficiency which are somewhat less
than those for a geometrical-optical focusator.
The table summarizes all the focusators
discussed in this paper. One can see the advantages
in terms of the uniformity, the efficiency, and the
regular phase structure that we achieve when using
physically warranted initial approximation in the
form of the geometrical-optical phase (compare
rows 1-4 with row 5). The comparison between
rows | and 2 in the table shows that the Gerchberg-
-Saxton method yields the increase of 7% in the
energy efficiency of the geometrical-optical appro-
ximation (row 1) but produces considerable non--

Fig.7 The intensity distribution
in a lens focus obtained {rom

the focusator with a

shown in Fig.6.

phase



Table
The ene- The relative
Type of a focusator and a gy efl- r.ms.
phase ici-ency error
€ % 8. %
Geometrical-optical phase 91.6 5.0
10 iterations of the
Gerchberg-Saxton algorithm
. . 98.9 13.0
on the geometrical-optical
phase
10 iterations of the adaptive-
iterative algorithm on the 92.2 0.1
geometrical-optical phase
10 combined iterations on
the geometrical-optical 96.4 24
phase
10 iterations on the radius- 80 8 6.4
random phase

uniformity of the intensity over the square (13% in-
stead of 5%).

On the contrary, the adaptive method en-
sures the high degree of the intensity uniformity
(0.1%) but it practically does not improve the
efficiency as compared with the geometrical-optical
approximation (row 3). The combined method
enables us to obtain rather high efficiency in com-
bination with the quite satisfactory intensity unifor-
mity (row 4 in the table). Row 5 shows that not
knowing the geometrical-optical solution but based
upon the random initial phase in the estimate of
the focusator's phase, and using the iterative me-
thod we can achieve suitable results in terms of the
accuracy and the efficiency in the formation of the
required intensity distribution.

5. Conclusions

In the present work the authors have numeri-
cally shown that an optimal approach to a problem
of computation of phase optical elements focusing
the laser light into the small areas of the spatial
spectrum plane consists in the solving of the inverse
geometrical-optical task and finding of the phase
function which is then chosen as the initial appro-
ximation for the adaptive-iterative procedure of
obtaining of tn final phase. In this case the iterative
procedure of the correction for the initial phase
with the regular zone structure does not result in its
essential change.
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