В.Н.Гришанов

КЛАССИФИКАЦИЯ И РАЦИОНАЛЬНОЕ ПРОЕКТИРОВАНИЕ СОЛНЕЧНЫХ ИМИТАТОРОВ

Трудно переоценить влияние солнечной радиации на процессы протекающие в природной и техногенной средах, поэтому испытаниям на воздействие солнечного излучения подвергают изделия и материалы от самых простейших до космических аппаратов и их систем [1]. Проведение испытаний в натурных условиях часто оказывается невозможно или слишком дорого по причинам сложности поддержания одних и тех же условий при проведении серии экспериментов; работы в режиме реального времени, что неоправдано удлиняет сроки испытаний [2]. Эти трудности многократно возрастают при комбинированных воздействиях.

С другой стороны имитация как абсолютных значений плотности мощности потока солнечного излучения, так и его спектрального распределения на площади ~100 см², на которой можно было бы разместить испытуемый образец, изделие или модель аппарата связано с крупными энергозатратами. Так промышленный имитатор Солнца [3] с газоразрядной ксеноновой лампой с максимальным световым диаметром 120 мм потребляет от сети 15 кВт, хотя и имеет погрешность имитации солнечного спектра ±10% в диапазоне длин волн 0,35...2 мкм. Конкретизаиция цели физического моделирования часто позволяет добиться адекватности модельной и реальной ситуации менее энергоемкими средствами.

В настоящее время можно ввести классификацию задач, каждая из которых предъявляет свои специфические требования к имитатору Солнца:

- Солнце как источник фотоиндуцируемых химических превращений [4];

Солнце как источник радиационного нагрева [1];

Солнце как источник фоновых помех [5];

- Солнце как маяк астронавигационных систем [6, 7];

- Солнце как источник электродвижущей силы фотопреобразователей [8];

- Солнце как источник биологически активного излучения.

Последняя проблема выходит за рамки настоящей работы.

Создание имитатора для решения любой из вошедших в классификационный список задач, как правило, не требует воссоздания солнечного спектра во всем исследованном диапазоне 0,14...300 мкм и достижения интегральной плотности потока солнечной радиации на уровне солнечной постоянной 135,5 мВт/см² [9]. Экспериментальными исследованиями механизмов фотоокрашивания покрытий с наполнителями ИЗ неорганических пигментов (Al₂O₃, MgO, TiO₂, PiCO₃, ZnO и др.) доказано, что на их протекание основное влияние оказывает "жесткая" часть ультрафиолетового излучения (0,2...0,3 мкм) в световом пучке [4]. В этой спектральной области лучшим имитатором спектра Солнца является ксеноновая лампа ДКиР. Расхождение спектров Солнца и лампы ДКиР в длинноволновой области (≥0,4 мкм) несущественны в связи с ее слабой фотоактивностью. Присутствие ультрафиолетовой части спектра в пределах от 280 нм до 400 нм с плотностью потока ≤100 Вт/м² также необходимо и при испытаниях радиоаппаратуры [10]. В области "жесткого" ультрафиолета лампы накаливания неэффективны и вряд ли могут составить конкуренцию газоразрядным и дуговым источникам света.

В общем виде поглощенный элементарной площадкой $d\sigma_2$ квазимонохроматичный лучистый поток, создаваемый элементарной площадкой источника $d\sigma_1$ в дифференциальной форме определяется выражением:

$$d^{3}F_{n\lambda} = (B_{\lambda}\cos\varphi_{1}d\sigma_{1})(\alpha_{\lambda}\cos\varphi_{2}d\sigma_{2})d\lambda/r^{2}, \qquad (1)$$

 B_{λ} - спектральная энергетическая яркость источника $d\sigma_1$ в направлении площадки $d\sigma_2$; α_{λ} - спектральный коэффициент поглощения площадки $d\sigma_2$ в направлении источника $d\sigma_1$; φ_1 - угол между радиусом-вектором, соединяющим площадки $d\sigma_1$ и $d\sigma_2$ и нормалью к изучающей площадке $d\sigma_1$; φ_2 - угол между тем же радиусом-вектором и нормалью к площадке $d\sigma_2$ [1]; r - длина радиуса-вектора.

Форма записи выражения (1) в виде произведения двух скобок удобна тем, что позволяет разделить члены, относящиесяя в основном к источнику лучистого потока и к поглощающей его площадке.

Если учесть, что α_{λ} и B_{λ} зависят не только от направлений, но и состояния поляризации, что задача как теоретических, так и экспериментальных оценок поглощенного образцом лучистого потока F_n без упрощающих предположений становится сложной. Удаленность Солнца и отсутствие поляризационной составляющей в его спектре приводит к следующим упрощениям выражения (1):

$$r = \text{const}_1; \quad \varphi_1 = \text{const}_2$$
 (2)

$$d^{2}F_{n\lambda} = \alpha_{\lambda} \cos\varphi_{2} d\sigma_{2} d\lambda \int \frac{B_{\lambda} \cos\varphi_{1}}{s_{1}} d\sigma_{1} = \alpha_{\lambda} E_{\lambda} \cos\varphi_{2} d\sigma_{2} d\lambda , \qquad (3)$$

где - S₁ - площадь поверхности Солнца;

$$E_{\lambda} = \int_{s_1} \frac{B_{\lambda} \cos \varphi_1}{r^2} d\sigma_2 , \qquad (4)$$

спектральная плотность энергетической освещенности, создаваемой Солнцем на расстоянии равном радиусу орбиты Земли. Значения E_{λ} в верхних слоях атмосферы и на поверхности Земли надежно установлены и приведены в справочной литературе [9, 12, 13].

Воссоздание E_{λ} в рабочей зоне является достаточным условием, предъявляемым к имитатору солнечного излучения для испытаний на радиационный нагрев, причем на диапазон 0,3...1,8 мкм приходится 90% излучаемого Солнцем потока [9]. Так же нет необходимости предъявлять жесткие требования к расходимости излучения, поскольку соs15°=0,966, и величина $d^2 F_{n\lambda}$ мало меняется даже для такого сильно расходящегося потока. В случае же слабой зависимости α_{λ} от λ вообще достаточно воспроизвести величину

$$E_{o} = \int_{\lambda_{1}}^{\lambda_{2}} E_{\lambda} d\lambda, \qquad (5)$$

на уровне солнечной постоянной без строгой идентификациии спектрального распределения. Поэтому простые осветители типа софитов с галогенными лампами являются вполне удовлетворительными имитаторами.

К задаче радиационного нагрева тесно примыкают и проблемы испытаний фотопреобразователей лучистого потока в электрическую энергию, т.к. требуемые для этого интегральные плотности потоков излучения соизмеримы с солнечной постоянной. Но и здесь наиболее распространенные фотоэлементы на основе кремния эффективны лишь при освещении их светом с длинами волн от 0,4 мкм до 1,1 мкм, достигая максимума коэффициента преобразования на 1 мкм [8]. В спектральном диапазоне 0,4...1,1 мкм интегральная энергетическая освещенность составляет уже не 135,5 мВт/см², а 91,2 мВт/см², а с учетом поглощения в слое атмосферы и того меньше. Поскольку электродвижущая сила фотоэлемента также изменяется по закону cos² от угла падения света, то жесткие требования к расходимости излучения не предъявляются. Максимум спектральной плотности силы излучения галогенных ламп накаливания приходится на область 1...1,2 мкм [4], что согласуется с максимумом коэффициента преобразования кремниевых фотоэлементов. Таким образом, имитатор Солнца с простыми в эксплуатации лампами накаливания в качестве источника излучения будет иметь характеристики, близкие к оптимальным. При проверке астронавигационных приборов имитатор должен воспроизводить заданный уровень превышения сигнала над фоном в области спектральной чувствительности датчика и, для датчиков точной ориентации [7], угловые размеры Солнца (32 угл.мин) [15]. Чувствительными элементами датчиков служат кремниевые, германиевые или сернисто-кадмиевые фотодиоды и фотосопротивления. Максимум их спектральной чувствительности лежит в видимом или ближнем ИК диапазонах. Часто в датчиках Солнца с помощью красных и нейтральных светофильтров осуществляется амплитудная селекция излучения по мощности и спектру. Следовательно спектральное согласование имитатора с датчиком Солнца требуется лишь в относительно узкой области, а величина интегрального светового потока в согласованном интервале длин волн уменьшена на величину ослабления вносимого нейтральным светофильтром, естественно с одновременным его выведением из оптического тракта. Компактность тела накала малогабаритных галогенных ламп типа КГ-12х100 и КГ-24х150 [16] обеспечивает малые угловые размеры источника излучения.

Солнце как источник фоновых помех для оптико-электронных приборов активного типа с лазерными излучателями и спектральной селекцией отраженных сигналов можно имитировать теми или аналогичными лазерными излучателями с формирующей оптикой и ослабителями, чтобы получить уровни фоновых освещенностей на модели или ее части в соответствии с полосой пропускания ОЭП. При узкой 1...10 нм полосе пропускания эти уровни невелики и легко достижимы. От экспериментатора требуется лишь воспроизведение угловых положений в системе: имитатор - модель - ОЭП.

Для ОЭП пассивного типа, работающих по отраженному объектом солнечному излучению или собственному тепловому, важно соблюсти подобие спектральных распределений Солнца и имитатора, достижение же интегральной энергетической освещенностью значения солнечной постоянной не является обязательным условием. Основные параметры ОЭП - вероятности обнаружения и ложных тревог зависят от отношения сигнал/шум [5], обеспечение которого и является необходимым условием адекватности модельной ситуации и реальности. Часто достаточно отношение сигнал/шум 5...10. В лабораторных же условиях помехи могут составлять в среднем доли фотона за цикл измерения. Однако уменьшение интегральной энергетической освещенности может привести к трансформации статистики фотоотсчетов от нормального распределения для сильного сигнала через различные промежуточные к пуассоновской [17]. Оценочные уровни смены статистик: ≥100 фотоотсчетов за цикл измерения - нормальная, ≤10 пуассоновская, 10...100 - промежуточная, которая определяется источником излучения, средой распространения и самим ОЭП и, как правило, нуждается в самостоятельном исследовании. Поскольку спектр излучения Солнца довольно точно аппроксимируется черным телом [18], как и излучение галогенных ламп [14], то и в этом случае, как будет показано ниже соответствующим подбором светофильтров излучение галогенной лампы приводится к цветовой температуре Солнца в требуемой спектральной области.

Схемы построения излучателей имитаторов Солнца аналогичны оптическим схемам проекционных приборов [15, 19]: источник света, конденсор, объектив (см.рис.1). Назначение конденсора - собрать как можно большую долю светового потока источника в фокальной плоскости объектива, а объектива - задать требуемую расходимость. Корректирующий светофильтр приближает спектральное распределение источника света к солнечному в заданной области спектра.

Как было показано, для решения нескольких классов задач перспективно использование в качестве источника света имитатора Солнца галогенных ламп накаливания. Их цветовая температура в рабочей области изменяется по линейному закону в зависимости от протекающего через них тока от 1900 до 3500 К [14], поэтому ток лампы имитатора необходимо стабилизовать электронными средствами, что и отражено на схеме (рис.1). Поскольку Солнце и галогенная лампа моделируются абсолютно черными телами с цветовыми температурами T_1 и T_2 соответственно, то относительные распределения энергии их излучения по длинам волн описываются

$$y_{1,2}(x_{\lambda,1,2}) = 142,32x_{\lambda,1,2}^{-5}(e^{\frac{4,9651}{x_{\lambda,1,2}}} - 1)^{-1},$$
(6)

где индекс 1 относится к Солнцу, а индекс 2 к лампе:

$$x_{\lambda,1,2} = \lambda/\lambda_{m,1,2},$$

 λ - длина волны; $\lambda_{m,1,2}$ - длина волны излучения абсолютно черного тела в максимуме и вычисляется по закону Вина:

$$\lambda_{\rm m,1,2} = c/T_{1,2},\tag{7}$$

где с=2897,8 мкм • k - постоянная Вина.

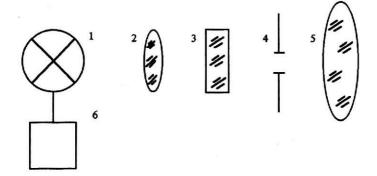


Рис.1. Схема имитатора Солнца

1 - источник света; 2 - конденсор; 3 - корректирующий светофильтр; 4 - регулируемая диафрагма; 5 - объектив; 6 - стабилизатор тока.

В абсолютных единицах, спектральное распределение энергетической освещенности примет вид:

$$E_{\lambda,1,2} = c_{1,2} E_{1,2} y_{1,2}(x_{\lambda,1,2}), \tag{8}$$

где E_1 - интегральная энергетическая освещенность (солнечная постоянная), E_2 - интегральная энергетическая освещенность, которую создает галогенная лампа; $c_{1,2}$ - нормирующий множитель, имеющий размерность λ^{-1} . Он вычисляется из условия:

$$E_{1,2} = \int_{0}^{\infty} E_{\lambda,1,2} d\lambda, \qquad (9)$$

и для абсолютно черного тела определяется простым выражением:

$$c_{1,2} = 0,657568/\lambda_{\rm m,1,2} \tag{10}$$

Коэффициент пропускания корректирующего светофильтра T_{λ} , трансформирующего спектр лампы $E_{\lambda 2}$ в спектр подобный солнечному $kE_{\lambda 1}$ в некотором диапазоне (см.рис.2), является решением уравнения:

$$kE_{11} = T_1 E_{12} , (11)$$

откуда

$$T_{\lambda} = k E_{\lambda 1} / E_{\lambda 2}, \tag{12}$$

где k - коэффициент пропорциональности.

....

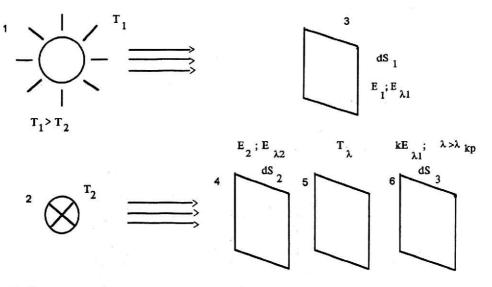


Рис.2. К расчету корректирующего светофильтра

1 - Солнце с цветовой температурой T₁; 2 - лампа с цветовой температурой T₂; 3,4,6 - элементарные площадки; 5 - корректирующий светофильтр.

Подставив в (12) выражение для $E_{\lambda,1,2}$ (8), получим:

$$T_{\lambda} = \frac{kE_1}{E_2} \left(\frac{\lambda_{m1}}{\lambda_{m2}}\right)^4 \frac{\left(e^{4,9651}\right)^{\frac{\lambda_{m2}}{\lambda}} - 1}{\left(e^{4,9651}\frac{\lambda_{m1}}{\lambda_{m2}}\right)^{\frac{\lambda_{m2}}{\lambda}} - 1}$$
(13)

Если в решении (13) $T_2 > T_1$, то $\lambda_{m2} > \lambda_{m1}$, т.е. $\lambda_{m1} / \lambda_{m2} > 1$ и соответствующим подбором величин k и E_2 можно получить полную идентичность спектрального распределения имитатора и Солнца в любом спектральном диапазонее $0 < \lambda < \infty$ с помощью пассивного светофильтра, т.к. $T_{\lambda} \le 1$ для всех $0 < \lambda < \infty$.

Поскольку цветовая температура Солнца выше чем у галогенных ламп ($T_2 < T_1$ и $\lambda_{m1}/\lambda_{m2} < 1$ и полная идентификация спектров с помощью корректировок пассивным ($T_{\lambda} < 1$) светофильтром невозможна в полном соответствии со вторым началом термодинамики. Тем не менее в ограниченной области спектра для длин волн больше некоторой критической $\lambda_{\rm KP}$ точное воспроизведение спектрального распределения излучения Солнца достижимо.

Значение $\lambda_{\mathbf{xp}}$ находится из условия $T_{\lambda}=1$:

$$\frac{kE_{1}}{E_{2}} \left(\frac{\lambda_{m1}}{\lambda_{m2}}\right)^{4} \frac{\left(e^{4,9651}\right)^{\frac{\lambda_{m2}}{\lambda_{up}}} - 1}{\left(e^{4,9651\frac{\lambda_{m2}}{\lambda_{up}}}\right)^{\frac{\lambda_{m2}}{\lambda_{up}}} - 1} = 1.$$
(14)

Из-за трансцендентности уравнения (14) доказательство существования его решения следует из рассуждений качественного характера. При $T_2 < T_1$, $\lambda_{m2} > \lambda_{m1}$ наиболее быстрорастущей частью выражения (13) с уменьшением λ является числитель

$$\left(e^{4,9651}\right)^{\frac{\lambda_{m2}}{\lambda}} - 1$$
 (15)

Поэтому, если для больших $\lambda > \lambda_{\rm kp}$ удается подобрать k и E_2 , чтобы $T_{\lambda} < 1$, то по достижении $\lambda = \lambda_{\rm kp}$ с уменьшением λ сначала достигается равенство $T_{\lambda} = 1$, а затем и $T_{\lambda} > 1$, когда пассивный фильтр становится физически нереализуем.

В заключение следует отметить перспективность использования импульсных излучателей для создания имитаторов Солнца как источника фоновых помех, маяков и электродвижущей силы, особенно при решении задач, связанных с получением интегральных плотностей мощности потока на уровне солнечной постоянной или выше. Здесь наряду с изложенными выше требованиями по уровням энергетической освещенности, спектральным распределениям и расходимости, следует наложить еще естественное ограничение на длительность импульса имитатора $\tau_{\rm u}$. $\tau_{\rm u}$ должна быть больше характерного для конкретных испытаний промежутка времени $\tau_{\rm o}$, в качестве которого может выступать время сбора первичной информации датчиков, например время записи в ЭВМ кадра телевизионного изображения, постоянная времени датчика Солнца или солнечной батареи.

ЛИТЕРАТУРА

- Моделирование тепловых режимов космического аппарата и окружающей его среды./ Под ред.Г.И.Петрова.- М.: Машиностроение, 1971. -382 с.
- 2. Петров В.П. Контроль качества и испытание оптических приборов.- Л.: Машиностроение, 1985. 222 с.
- 3. Дубиновский А.М., Панков Э.Д. Стендовые испытания и регулировка оптико-электронных приборов. - Л.: Машиностроение, 1986. -152 с.
- 4. Войценя В.С., Гужова С.К., Титов В.И. Воздействие низкотемпературной плазмы и электромагнитного излучения на материалы. М.: Энергоатомиздат, 1991. 224 с.
- 5. Протопопов В.В., Устинов Н.Д. Инфрокрасные лазерные локационные системы. М.: Воениздат, 1987. 175 с.
- 6. Сафронов Ю.П., Андриянов Ю.Г. Инфрокрасная техника и космос. М.: Сов.радио, 1978. 248 с.
- Ивандиков Я.М. Оптико-электронные приборы для ориентации и навигации космических аппаратов. - М.: Машиностроение, 1971. - 200 с.
- 8. Колтун М.М. Солнечные элементы. М.: Наука, 1987. 192 с.
- Макарова Е.А., Харитонов А.В. Распределение энергии в спектре Солнца и солнечная постоянная. - М.: Наука, 1972. -288 с.
- 10. Глудкин О.П. Методы и устройства испытаний РЭС и ЭВС. М.: Высш.шк., 1991. -336 с.
- 11. Гуревич М.М. Введение в фотометрию. М.: Энергия, 1968. -244 с.
- Околоземное космическое пространство: Справочные данные/Под ред.Ф.С.Джонсона. - М.: Мир, 1966. -191 с.
- Инженерный справочник по космической технике/Под ред.А.В.Солодова. М.: Воениздат. 1977. -430 с.
- 14. Сидоров С.Н., Смолкин М.Н., Никитичева А.М. Интегральные и спектральные характеристики галогенных ламп накаливания. ОМП, 1976, N 2, стр.79-80.
- 15. Тельный А.А. Имитация солнечного излучения в лабораторных условиях. ОМП, 1976, N 5, стр.43-46.
- 16. Вугман С.М., Волков В.И. Галогенные лампы накаливания. М.: Энергия, 1980. -136с.

- 17. Стонога В.А., Лагутин М.Ф. Исследование статистики фотоотсчетов реального локационного канала. - Тез.докл. IV Всесоюзн.симп.по лазерному зондированию атмосферы. -Томск: изд-во Ин-та оптики атмосфер СО АН СССР, 1976, стр.182-183.
- 18. Бакулин П.И., Кононович Э.В., Мороз В.И. Курс общей астрономии. М.: Наука, 1970. -536 с.
- 19. Вычислительная оптика: справочник/Под ред.М.М.Русинова. Л.: Машиностроение, 1984. -423 с.
- 20. Криксунов Л.З. Справочник по основам инфрокрасной техники. М.: Сов. радио, 1978. -400 с.

К СВЕДЕНИЮ АВТОРОВ

При подготовке статей в сборник "Компьютерная оптика" просим руководствоваться следующими правилами:

1. Материал должен быть изложен лаконично и ясно, окончательно отработан. Текст должен представляться в двух экземплярах (один из которых - первый машинописный оттиск) на русском или английском языках.

2. Рукопись должна быть напечатана через два интервала на одной стороне листа формата A4. Объем статей и обзоров для публикации в сборнике, как правило, не должен превышать 24 страниц машинописного текста, кратких сообщений - 10 страниц.

3. К статье (обзору) должна быть приложена аннотация на русском и английском языках.

4. Формулы вписываются крупно и отчетливо. Заглавные и строчные буквы, отличающиеся только своими размерами, подчеркиваются карандашом двумя чертами: заглавные - снизу, строчные сверху. Нуль не подчеркивается. Греческие буквы обводят кружном красным карандашом, знаки математических операций (например, дифференцирования и интегрирования) - зеленым. Употребление специальных букв и символов следует оговаривать на полях рукописи. Индексы и показатели степени следует писать четко ниже или выше строки и отчеркивать дугами карандашом. Латинские буквы в тексте обводят кружком синим карандашом.

5. Иллюстративный и графический материал должен быть пронумерован и выполнен в виде, пригодном для полиграфического воспроизводства. К рисункам (при необходимости) отдельно даются подрисуночные тексты.

6. Страницы рукописи должны быть пронумерованы. На полях следует указать места размещения рисунков, графического материала и таблиц.

7. В список литературы следует включать все использованные источники, снабжая их порядковой нумерацией. Библиографические описания источников должны располагаться в списке в порядке появления ссылок в тексте. При ссылках на источник в тексте указывается номер по списку в квадратных скобках.

8. Рукопись должна быть обязательно подписана автором, а при наличии нескольких авторов всеми соавторами. Статьи, являющиеся результатом работ, проведенных в организациях, должны обязательно сопровождаться письмами этих организаций.

9. Необходимо указать фамилию, полное имя и отчество каждого соавтора, ученую степень, ученое звание, должность, организацию, страну, точный адрес и номер телефона.

10. Для публикации в сборнике принимаются только открытые материалы.

Classification and rational design of solar simulators

V.N. Grishanov

Abstract

It is hard to overestimate the effect of solar radiation on the processes occurring in natural and man-made environments, therefore, various products and materials from the simplest ones to spacecraft and their systems are tested for exposure to solar radiation [1]. Conducting field tests is often impossible or is too expensive due to the difficulty of maintaining the same conditions during a series of experiments and in case of real-time operation, which makes the test time unreasonably long [2]. These difficulties rise exponentially when the effects are combined.

<u>Citation</u>: Grishanov VN. Classification and rational design of solar simulators. Computer Optics 1995; 14-15(2): 46-52.

References

- Simulation of Thermal Conditions at the Spacecraft and its Environment. Ed. Petrova GI; Moscow: Mashinostroenie Publisher; 1971; 382.
- [2] Petrov VP. Quality control and testing of optical instruments; Leningrad: Mashinostroenie Publisher; 1985; 222.
- [3] Dubinovsky AM, Pankov ED. Bench tests and control of optical-electronic devices; Leningrad: Mashinostroenie Publisher; 1986; 152.
- [4] Voitsenya VS, Guzhova SK, Titov VI. The impact of low-temperature plasma and electromagnetic radiation on materials; Moscow: Energoatomizdat Publisher; 1991; 224.
- [5] Protopopov VV, Ustinov ND. Infrared laser location systems; Moscow: Voenizdat Publisher; 1987; 175.
- [6] Safronov YP, Andriyanov YT. Infrared technology and outer space. Moscow: Sov.radio; 1978; 248.
- [7] Ivandikov YM. Optoelectronic devices for orientation and navigation of spacecraft; Moscow: Mashinostroenie Publisher; 1971; 200.
- [8] Koltun MM. Solar cells; Moscow: Nauka Publisher, 1987; 192.
- [9] Makarova EA, Kharitonov AV. Spectral energy distribution of the sun and the solar constant; Moscow: Nauka Publisher; 1972; 288.
- [10] Gludkin OP. Methods and devices for testing RES and EMU; Moscow: High School Publisher; 1991; 336.
- [11] Gurevich MM. Introduction to photometry. Moscow: Energiya Publisher; 1968; 244.
- [12] Near-earth space, Reference Data; Ed. Johnson FS; Moscow: Mir Publisher; 1966; 191.
- [13] Engineer guidebook on space-system engineering; Ed. Solodova AV; Moscow: Voenizdat Publisher; 1977; 430.
- [14] Sidorov SN, Smolkin MN, Nikiticheva AM. Integral and spectral characteristics of halogen incandescent lamps. OMP; 1976; 2: 79-80.
- [15] Telnyi AA. Imitation of solar radiation in the laboratory. OMP; 1976; 5: 43-46.
- [16] Vugman SM, Volkov VI. Halogen incandescent bulbs. Moscow: Energiya Publisher; 1980; 136.
- [17] Stonoga VA, Lagutin MF. A study of the statistics of photocounts of a real location channel. Abstracts of papers of the Fourth All-Union Symposium on Laser Sensing of the Atmosphere; Tomsk; Publishing house of the Institute of Atmospheric Optics, Siberian Branch, Academy of Sciences of the USSR; 1976; 182-183.
- [18] Bakulin PI, Kononovich EV, Moroz VI. Course in general astronomy; Moscow: Nauka Publisher; 1970; 536.
- [19] Computational Optics: Reference; Ed. Rusinova MM; Leningrad: Energiya Publisher; 1984; 423.
- [20] Kriksunov LZ. A handbook of the fundamentals of infrared technology; Moscow: Sov.radio Publisher; 1978; 400.