ИТЕРАТИВНЫЙ РАСЧЕТ ДОЕ, ФОКУСИРУЮЩИХ В ОБЪЕМ И НА ПОВЕРХНОСТЬ ТЕЛ ВРАЩЕНИЯ

Введение

Известны итеративные методы для расчета фазовых дифракционных оптических элементов (ДОЕ), которые фокусируют лазерное излучение в пространственные плоские фигуры (изображения) [1,2]. Для расчета ДОЕ в обпемные фигуры, используют разбиение на N плоскостей и сведение задачи к расчету ДОЕ, формирующего плоские изображения. В [3,4] предложены различные подходы. В [3] независимо рассчитываются комплексные амплитуды $f_n(x,y)$, преобразование Френеля которых связано с заданным распределением интенсивности $I_n(\xi,\eta)$ на плоскостях $z=z_n$ (см. рис.1) уравнением

$$I_n(\xi,\eta) = \left|\Im_n\left\{f_n(x,y)\right\}\right|^2 \tag{1}$$

где $\Im_n\{\cdot\}$ – преобразование Френеля на плоскость $z=z_n$.

Рис.1 Оптическая схема для фокусировки с помощью ДОЕ в 3-х мерную область.

Результирующая функция пропускания ДОЕ равна арифметическому среднему:

$$f(x,y) = \frac{1}{N} \sum_{n=0}^{N} f_n(x,y)$$
(2)

Далее для замены амплитудно-фазовой функции f(x, y) на только фазовую функцию используют обычные процедуры кодирования в цифровой голографии [5].

В работе [4] функции $f_n(x, y)$ рассчитываются взаимосвязанно, а не независимо, что позволяет в ходе итеративного процесса получить только фазовую функцию без дополнительных (малоэффективных) процедур кодирования.

В [6] рассматривалась в приближении геометрической оптики задача расчета ДОЕ, фокусирующего на поверхность вращения с осью z.

В данной работе используя иной подход, рассматриваются итеративные методы расчета фазовых ДОЕ, фокусирующих лазерное излучение в объем и на поверхность тел вращения.

1. Общее рассмотрение.

Оптическая схема на рис.1 показывает, что ДОЕ, который рассматривается как тонкий фазовый транспарант, освещается плоской волной света с длиной волны $\lambda = 2\pi/k$, k - волновое число, и формирует на расстояниях вдоль оптической оси z_n , n = 1, N, заданные распределения интенсивности $I_n(\xi,\eta)$.

Рассмотрение проводится в рамках скалярной волновой теории дифракции Кирхгофа в приближении Френеля.

В [4] описан алгоритм расчета функции пропускания ДОЕ с помощью итеративной процедуры минимизирующей функционал

$$M = \sum_{n=1}^{N} \iint_{-\infty}^{\infty} \left[\left| F(\xi, \eta, z_n) \right| - A_n(\xi, \eta) \right]^2 d\xi d\eta$$
(3)

где

$$A_n(\xi,\eta) = \sqrt{I_n(\xi,\eta)}, \quad n = \overline{1,N}$$

$$F(\xi,\eta,z_n) = \Im_n \left\{ e^{iT(x,y)} \right\} = \frac{k}{z_n} \iint_{\Omega} \exp \left[iT(x,y) + \frac{ik}{2z_n} \left| (x-\xi)^2 + (y-\eta)^2 \right| \right] dx dy$$
(4)

где Т(х, у) искомая фаза ДОЕ, который формирует световое поле с комплексной амплитудой F(ξ, η, z), модуль которой совпадает на заданных расстояниях z_n с требуемой амплитудой $A_n(\xi,\eta,z_n), \Omega$ — форма апертуры ДОЕ.

Итеративный алгоритм, минимизирующий средне квадратичное отклонение (3), имеет вид:

$$T_p(x,y) = \arg\left[\sum_{n=1}^N U_n^{(p)}(x,y)\right]$$
(5)

$$U_n^{(p)}(x,y) = \Im_n^{-1} \left\{ A_n(\xi,\eta) \exp\left[iQ_{n,p}(\xi,\eta)\right] \right\}$$
(6)

$$Q_{n,p}(\xi,\eta) = \arg \left[\Im_n \left\{ \exp \left[i T_{p-1}(x,y) \right] \right\} \right]$$
(7)

где p – номер итерации, $Q_{n,p}(\xi,\eta)$ – фаза светового поля на плоскости, отстоящей от ДОЕ на расстоянии z_n и рассчитанная на p-ой итерации.

варианты итеративного алгоритма различные Ниже рассматриваются минимизирующего функционал средне квадратичного отклонения вида

$$M_{1} = \iint_{\Omega} \left| e^{iT(x,y)} - \sum_{n=1}^{N} C_{n} U_{n}(x,y) \right|^{2} dx dy$$
(8)

где C_n – комплекснозначные весовые множители.

Функционал (3), записанный в плоскостях, отстоящих от ДОЕ на расстояниях z_n , можно с помощью равенства Парсеваля записать в плоскости ДОЕ:

$$M = \sum_{n=1}^{N} \iint_{\Omega} \left| e^{iT(x,y)} - U_n(x,y) \right|^2 dx dy$$
(9)

Функции Un(x, y) в уравнениях (8) и (9) являются результатом вычисления обратного преобразования Френеля:

$$U_n(\mathbf{x}, \mathbf{y}) = \mathfrak{I}_n^{-1} \left\{ A_n(\boldsymbol{\xi}, \boldsymbol{\eta}) \right\}$$
(10)

$$F_n(\xi,\eta) = A_n(\xi,\eta) \exp[iQ_n(\xi,\eta)]$$
(11)

Если переписать функционал (9) в обобщенной форме с весовыми коэффициентами

$$\hat{M} = \sum_{n=1}^{N} \iint_{\Omega} \left| e^{iT(x,y)} - C_n U_n(x,y) \right|^2 dx dy$$
(12)

то нетрудно получить уравнение, связывающее значения обоих функционалов

$$M_{1} = \hat{M} + \sum_{m \neq n}^{N} \sum_{m \neq n}^{N} C_{m} C_{n}^{*} \iint_{\Omega} U_{n}(x, y) U_{m}^{*}(x, y) \, \mathrm{d} x \, \mathrm{d} y - (N - 1) \cdot W_{0}$$
(13)

где

$$W_0 = \iint_{\Omega} \left| e^{iT(x,y)} \right|^2 dx dy$$
(14)

- полная световая энергия в плоскости ДОЕ.

Из уравнения (13) видно, что функционалы M_1 и \hat{M} равны с точностью до несущественной постоянной $(N-1)\cdot W_0$ при ортогональности функций $U_n(x,y)$, то есть при выполнении условия:

$$\iint_{\Omega} U_n(x,y) U_m^*(x,y) \,\mathrm{d} x \,\mathrm{d} y = \iint_{-\infty}^{\infty} F_n(\xi,\eta) F_m^*(\xi,\eta) \,\mathrm{d} \xi \,\mathrm{d} \eta = W_0 \delta_{mn} \tag{15}$$

где δ_{mn} — символ Кронекера. Функционал общего вида (8) имеет произвол в выборе функций $Q_n(\xi,\eta)$.

Условию ортогональности (14) можно удовлетворить, задавая амплитудные функции на плоскостях фокусировки в зоне дифракции Френеля $A_n(\xi,\eta)$ с пространственно разделенными носителями, то есть области G_n , в которых амплитуды $A_n(\xi,\eta)$ отличны от нуля, не пересекаются между собой:

$$G_n \cap G_m = \emptyset, \quad m, n = \overline{1, N}$$
 (16)

Такое условие реализуется при расчете разовых ДОЕ, формирующих моды Гаусса-Эрмита или Гаусса-Лагерра в различных порядках дифракции [7,8].

Условию (15) можно также удовлетворить, разделив апертуру ДОЕ Ω на N непересекающихся субапертур Ω_n , в каждой из которых задается функция $U_n(x,y)$:

$$\Omega_n \cap \Omega_m = \emptyset, \quad m, n = 1, N \tag{17}$$

Разбиение апертуры ДОЕ, например, на кольцевые субапертуры применяется при расчетах аксиконов и формирователей бесселевых мод [9], а также при использовании метода конечных элементов для расчета ДОЕ [10].

Минимизация функционала (8) эквивалентна поиску коэффициентов C_{a} , обеспечивающих выполнение следующего равенства

$$e^{iT(x,y)} = \sum_{n=1}^{N} C_n U_n(x,y) .$$
 (18)

где функции $U_n(x,y)$ определяются уравнениями (10), (11) и в общем случае неортогональные. Уравнение (18) можно рассматривать как двумерную проекцию трехмерной задачи:

$$e^{iT(x,y,z)} = \sum_{n=1}^{N} C_n U_n(x,y) \psi_n(z)$$
(19)

где функции $\psi_{n}(z)$ ортогональны:

$$\int_{0}^{1} \Psi_{n}(z) \Psi_{m}^{*}(z) dz = \delta_{mn}$$
⁽²⁰⁾

Если, например, функции (20) выбрать в виде

$$\Psi_n(z) = \exp[i2\pi nz] \tag{21}$$

то коэффициенты суммы (19) вычисляются с помощью соотношений:

$$C_{n} = W_{0}^{-1} \iint_{\Omega} L_{n}(x, y) U_{n}^{*}(x, y) \,\mathrm{d} x \,\mathrm{d} y$$
⁽²²⁾

$$L_{n}(x,y) = \int_{0}^{1} \exp[iT(x,y,z) - i2\pi nz] dz$$
(23)

С учетом уравнений (18)-(23) получим итеративный алгоритм минимизации функционала (8):

$$T_{p}(x, y, z) = \arg\left[\sum_{n=1}^{N} B_{n} e^{iD_{n,p}} U_{n}(x, y) e^{i2\pi nz}\right]$$
(24)

$$D_{n,p} = \arg\left[\iint_{\Omega} L_{n,p}(x,y) U_n^*(x,y) \,\mathrm{d} x \,\mathrm{d} y\right]$$
(25)

$$L_{n,p}(x,y) = \int_{0}^{1} \exp\left[iT_{p-1}(x,y,z) - i2\pi nz\right] \mathrm{d}z$$
(26)

где $B_n \ge 0$ — произвольные положительные числа, p — номер итерации. Искомая фазовая функция ДОЕ получается как проекция на ось z=0:

$$T_{p}(x, y) = T_{p}(x, y, z = 0)$$
⁽²⁷⁾

Сходимость в среднем алгоритма (24)-(26) показана в Приложении.

ĩ.

2. Фокусировка в радиально-симметричную область.

На рис.2 показана оптическая схема для расчета ДОЕ, фокусирующего излучение на ряд плоскостей, являющихся круглыми сечениями тела вращения. При этом амплитуда $A_n(\xi,\eta)$ на каждой из плоскостей зависит в полярных координатах $\xi = \rho \cdot \cos\theta$, $\eta = \rho \cdot \sin\theta$ только от радиальной переменной ρ : $A_n(\rho)$.

Рис.2 Оптическая схема для фокусировки с помощью ДОЕ в тело вращения.

Тогда вместо уравнений (19) и (22) в данном случае можно записать:

$$\mathbf{e}^{iT(r,\phi)} = \sum_{n=1}^{N} C_n U_n(r) \, \mathbf{e}^{in\phi} \tag{28}$$

$$C_{n} = \left(2\pi W_{0}\right)^{-1} \int_{0}^{R} \int_{0}^{2\pi} e^{iT(r,\phi)} U_{n}^{*}(r) e^{in\phi} r \, \mathrm{d}r \, \mathrm{d}\phi$$
(29)

$$U_n(r) = \mathfrak{I}_n^{-1} \left\{ A_n(\rho) \,\mathrm{e}^{i\mathcal{Q}_n(\rho)} \right\} = \frac{k}{z_n} \exp\left[-i \frac{kr^2}{z_n} \right]_0^\infty A_n(\rho) \exp\left[i\mathcal{Q}_n(\rho) - i \frac{k\rho^2}{2z_n} \right] J_0\left(\frac{kr\rho}{z_n}\right) \cdot \rho \,\mathrm{d}\,\rho \qquad (30)$$

где (r,φ) – полярные координаты в плоскости ДОЕ, $J_d(x)$ – функция Бесселя нулевого порядка. Уравнение (30) является обратным преобразованием Френеля в полярных координатах.

Если интенсивность внутри сечений тела вращения постоянная, то амплитуду $A_{a}(\rho)$ можно выбрать в виде

$$A_n(\rho) = \sqrt{I_n} \operatorname{circ}\left(\frac{\rho}{\rho_0}\right)$$
(31)

где

$$\operatorname{circ}\left(\frac{\rho}{\rho_0}\right) = \begin{cases} 1, \ \rho \le \rho_0 \\ 0, \ \rho > \rho_0 \end{cases}$$
(32)

и I_n – постоянные значения интенсивности в круге на каждой плоскости. Произвольные фазы Q_n(ρ) в уравнении (30) можно выбрать квадратичными:

$$Q_n(\rho) = \frac{k\rho^2}{2z_n} \tag{33}$$

а постоянные интенсивности In выбираются из условия сохранения энергии

$$\pi \rho_n^2 I_n = W_0, \quad n = \overline{1, N} \tag{34}$$

Подставив выражения (31)-(33) в уравнение (30), получим конкретный вид функций разложения:

$$U_n(\mathbf{r}) = 2\pi\rho_n \sqrt{I_n} \mathbf{r}^{-1} J_1\left(\frac{k\mathbf{r}\rho_n}{z_n}\right) \exp\left[-i\frac{k\mathbf{r}^2}{2z_n}\right],$$
(35)

где $J_{1}(x)$ — функция Бесселя первого порядка.

Искомую функцию фазы ДОЕ $T(r,\varphi)$, фокусирующего в набор кругов с постоянными интенсивностями, с заданными радиусами и расположенных вдоль оптической оси на требуемых расстояниях z_n , можно искать в виде суммы с неполностью определенными коэффициентами:

$$e^{iT(r,\phi)} = r^{-1} \sum_{n=1}^{N} C_n J_1(\alpha_n r) \exp\left[-i\beta_n r^2 + in\phi\right],$$
(36)

где C_n — постоянные, модуль которых задается с учетом выбора интенсивностей I_n , а фаза является свободным параметром,

$$\alpha_n = \frac{k\rho_n}{z_n}, \quad \beta_n = \frac{k}{2z_n}$$

Из уравнения (36) следует выражение для расчета коэффициентов:

$$C_n = W^{-1} \int_0^R \int_0^{2\pi} e^{iT(r,\varphi)} J_1(\alpha_n r) \exp\left[-i\beta_n r^2 - in\varphi\right] \cdot r^2 \,\mathrm{d}r \,\mathrm{d}\varphi \tag{37}$$

$$W = 2\pi \int_{0}^{R} J_{1}^{2}(\alpha_{n}r) \cdot r \,\mathrm{d}r$$
(38)

Уравнения (36)—(38) позволяют получить итеративный алгоритм расчета функции фазы ДОЕ, аналогичный алгоритму (24)—(26).

3. Фокусировка в набор осевых точек.

Нетрудно получить разложение аналогичное (36) для расчета много фокусных дифракционных линз, которые формируют вдоль оптической оси z заданное число фокусов на требуемых расстояниях и с заданной интенсивностью. Другие подходы к расчету ДОЕ типа многофокусных линз рассмотрены в [11,12].

В данном случае вместо уравнения (31) для фокусировки в набор кругов следует использовать уравнение для фокусировки в набор дельта-импульсов:

$$A_n(\rho) = \sqrt{I_n \delta(\rho)} \tag{39}$$

Тогда вместо уравнений (35) и (36) получим, соответственно:

$$U_n(r) = \frac{k}{z_n} \sqrt{I_n} \exp\left[-i\frac{kr^2}{2z_n}\right]$$
(40)

$$e^{iT(r,\varphi)} = \sum_{n=1}^{N} C_n \exp\left[-i\beta_n r^2 + in\varphi\right], \quad \beta_n = \frac{k}{2z_n}$$
(41)

Вместо уравнения (37) коэффициенты суммы (41) вычисляются по формулам

$$C_{n} = \left(\pi R^{2}\right)^{-1} \int_{0}^{R} \int_{0}^{2\pi} e^{iT(r,\phi)} \exp\left[-i\frac{kr^{2}}{2z_{n}} - in\phi\right] \cdot r \,\mathrm{d}r \,\mathrm{d}\phi$$
(42)

Из уравнения (42) видно, что коэффициенты C_n вычисляются с помощью двумерного преобразования Фурье.

Заметим, что вместо суммы (41) для итеративного расчета многофокусных линз можно использовать более простое только радиальное уравнение

$$\mathbf{e}^{iT(\mathbf{r})} = \sum_{n=1}^{N} C_n \exp\left[-i\beta_n \mathbf{r}^2\right]$$
(43)

Но гауссовые экспоненты в уравнении (43) будут ортогональны только при условии:

$$\int_{0}^{R} \exp\left[-i(\beta_{m} - \beta_{n})r^{2}\right] \cdot r \,\mathrm{d}\,r = \delta_{mn} \tag{44}$$

которое выполняется при

$$z_n = n^{-1} z_0, \quad z_0 = \frac{R^2}{2\lambda}$$
 (45)

Из (45) следует, что разложением (43) удобно пользоваться для вычисления фазы ДОЕ, если требуемые фокусы расположены только на определенных расстояниях z_n .

4. Фокусировка на поверхность вращения.

Расчет ДОЕ, фокусирующих лазерное излучение на поверхность тела вращения, ось которого совпадает с оптическою осью, был осуществлен методом геометрической оптики в [6].

Ниже рассматривается дифракционный итеративный алгоритм. Если тело вращения с осью z представить как набор его поперечных сечений, то его поверхность аппроксимируется набором колец. Поэтому для расчета ДОЕ, формирующего набор световых колец с заданными радиусами ρ_n и расположенных на требуемых расстояниях z_n , можно получить уравнение, аналогичное уравнению (36). Для этого вместо выражения (31) для требуемой амплитуды на n—ой плоскости запишем:

$$A_n(\rho, \psi) = \sqrt{I_n} \cdot \delta(\rho - \rho_n) \cdot e^{in\psi}$$
(46)

Подставив выражение (46) в уравнение (30), получим вместо соотношения (35) следующее выражение для комплексной амплитуды в плоскости ДОЕ:

$$U_n(r,\phi) = \frac{(-i)^{n_t}}{z_n} \sqrt{I_n} J_n\left(\frac{kr\rho_n}{z_n}\right) \exp\left[-i\frac{k}{2z_n}\left(r^2 + \rho_n^2\right) + in\phi\right]$$
(47)

Обпединяя под знаком постоянной C_n сомножители в уравнении (47), которые не зависят от переменных r и φ , получим вместо уравнения (36), следующее уравнение

$$e^{iT(r,\phi)} = \sum_{n=1}^{N} C_n J_n(\alpha_n r) \exp\left[-i\beta_n r^2 + in\phi\right]$$
(48)

коэффициенты которого находятся по формулам, аналогичным (38) и (39):

$$C_{n} = W_{n}^{-1} \int_{0}^{R} \int_{0}^{2\pi} e^{iT(r,\phi)} J_{n}(\alpha_{n}r) \exp\left[i\beta_{n}r^{2} - in\phi\right] \cdot r \,\mathrm{d}r \,\mathrm{d}\phi \tag{49}$$

$$W_{n} = 2\pi \int_{0}^{R} J_{n}^{2}(\alpha_{n}r) \cdot r \,\mathrm{d}r$$

где $J_n(x) - функция Бесселя n-го порядка.$

С целью ускорения расчетов вместо разложения (48) можно использовать на практике следующее уравнение

$$e^{iT(r)} = \sum_{n=1}^{N} C_n J_0(\alpha_n r) \exp\left[-i\beta_n r^2\right]$$
(50)

Однако при этом слагаемые в уравнении (50) в общем случае не ортогональны между собой. Чтобы найти условие, которое надо наложить на параметры α_n и β_n для достижения ортогональности слагаемых в уравнении (50), можно использовать следующий справочный интеграл [13]:

$$\int_{0}^{\infty} e^{iax^{2}} J_{\nu}(bx) J_{\nu}(cx) x \, dx = \frac{i}{2a} J_{\nu}\left(\frac{bc}{2a}\right) e^{ih}, \quad h = \frac{b^{2} + c^{2}}{4a} - \frac{\nu\pi}{2}$$
(51)

Для функций, входящих в уравнение (50), вместо (51) получим

$$\int_{0}^{\infty} J_{1}(\alpha_{n}r) J_{1}(\alpha_{m}r) \exp\left[-i(\beta_{n}-\beta_{m})r^{2}\right] r \,\mathrm{d}r =$$

$$= \left(\beta_{n}-\beta_{m}\right)^{-1} J_{1}\left(\frac{\alpha_{n}\alpha_{m}}{2(\beta_{n}-\beta_{m})}\right) \exp\left[-i\frac{\alpha_{n}^{2}+\alpha_{m}^{2}}{4(\beta_{n}-\beta_{m})}\right], \quad \beta_{n} > \beta_{m}$$
(52)

Из уравнения (52) следует, что при удовлетворении параметров а_n и β_n условию

$$\frac{\alpha_n \alpha_m}{2(\beta_n - \beta_m)} = \gamma_p; \quad n, m = \overline{1, N}, \quad p = \overline{1, N^2}$$
(53)

где γ_p — корни функции Бесселя: $J_I(\gamma_p)=0$, слагаемые в сумме (50) будут ортогональны и коэффициенты можно рассчитывать по формулам:

$$C_n = W_n^{-1} \int_0^R \mathrm{e}^{iT(r)} J_0(\alpha_n r) \exp[i\beta_n r^2] \cdot r \,\mathrm{d}\, r$$
(54)

$$W_n = 2\pi \int_0^R J_0^2(\alpha_n r) \cdot r \,\mathrm{d}r \tag{55}$$

Условие (53) ограничевает выбор значений расстояний z_n и радиусов колец ρ_n . Однако, как показал численный эксперимент, можно получить хорошие результаты, считая слагаемые в уравнении (50) ортогональными и используя для расчета коэффициентов формулу (54).

4.1. Численные результаты.

Численные результаты, приведенные ниже, относятся к случаю фокусировки на поверхность вращения. Фаза ДОЕ при этом рассчитывается с помощью итеративного алгоритма, основанного на уравнениях (50) и (54). Рассчетные параметры: R=1 мм – радиус ДОЕ, $k=10^4$ мм⁻¹, n=256 – число отсчетов по радиальной переменной.

Коническая поверхность описывалась уравнением

$$\rho_n = \alpha \big(z_n - z_0 \big) + \rho_0 \tag{56}$$

где $\alpha = \pm 5 \times 10^{-3}$, $z_0 = 100$ мм, $\Delta z = 5$ мм — расстояние между плоскостями сечениями конуса, $n = \overline{1,10}$. На рис.3 показана полутоновая по уровню 2π фаза ДОЕ (а) и ее радиальное сечение (б), рассчитанные за 10 итераций алгоритмом на основе уравнений (50),(54).

Рис.3 Фаза (a) и ее радиальное сечение (б) для ДОЕ, фокусирующего на поверхность расходящегося конуса.

На рис.4 показаны распределения интенсивности (верхняя строка) и их сечения (нижняя строка), сформированные ДОЕ с фазой, показанной на рис.3, и рассчитанные на разных плоскостях вдоль оси z в диапазоне [100 мм, 150 мм] с шагом 10 мм (z растет слева направо).

Рис.4 Распределения интенсивности (верхняя строка) и ее радиальное сечение (нижняя строка), сформированные ДОЕ с фазой, показанной на рис.3.

На рис.5 показана зависимость нормированной интенсивности на поверхности конуса (рис.4, $\alpha > 0$) вдоль оси *z*. кривая 1 — заданное распределение интенсивности, кривая 2 — рассчитанная.

Рис.5 Распределение относительной интенсивности на поверхности расходящегося конуса.

На рисунках 6-8 представлены аналогичные расчетные результаты для фокусировки на поверхность конуса, но при α <0. На рис.6 показана фаза ДОЕ (а) и ее сечение (б), полученное за 7 итераций по методу (50), (54).

Рис.6 Фаза (а) и ее радиальное сечение (б) для ДОЕ, фокусирующего на поверхность сходящегося конуса.

На рис.7 показаны распределения интенсивности (верхняя строка) и их сечения (нижняя строка), рассчитанные при тех же значениях z_n , что и на рис.4.

Рис.7 Распределения интенсивности (верхняя строка) и ее радиальное сечение (нижняя строка), сформированные ДОЕ с фазой, показанной на рис.6.

На рис.8 представлен график зависимости интенсивности на поверхности конуса (рис.7, $\alpha < 0$) вдоль оси *z*: кривая 1 – заданное распределение, кривая 2 – рассчитанное.

Рис.8 Распределение относительной интенсивности на поверхности сходящегося конуса.

На рисунках 9–11 приведены результаты численного экперимента для фокусировки в цилиндр радиусом $\rho_0 = 0.5$ мм. На рис.9 показана фаза ДОЕ (а) и ее сечение (б), рассчитанные за 10 итераций по формулам (50) и (54) при $\alpha = 0$.

Рис.9 Фаза (a) и ее радиальное сечение (б) для ДОЕ, фокусирующего на поверхность цилиндра.

На рис.10 даны распределения интенсивности и их сечения, рассчитанные на тех же плоскостях, что и для рисунков 4 и 7. Расчет проводился с помощью интегрального преобразования Френеля, которое, в свою очередь, рассчитывалось с помощью алгоритма быстрого преобразования Фурье.

Рис.10 Распределения интенсивности (верхняя строка) и ее радиальное сечение (нижняя строка), сформированные ДОЕ с фазой, показанной на рис.9.

На рис.11 показан график зависимости относительной интенсивности света на поверхности цилиндра от расстояния z до оптического элемента.

Рис.11 Распределение относительной интенсивности на поверхности цилиндра.

Приведенные результаты показывают возможность использования предложенных итеративных алгоритмов для расчета фазовых оптических элементов, фокусирующих лазерное излучение на поверхности тел вращения.

- [1] P.M.Hirsch, J.A.Jordan. L.B.Lesem. Method of marking an object dependent diffuser. Patent U.S. 3619022 (1971)
- [2] R.W.Gerchberg, W.D.Saxton. A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik 35(2) 237-246 (1972)
- [3] D.Leseberg. Computer-generated three-dimensional image holograms. Appl. Opt. 31(2) 223-229 (1992)
- [4] М.А.Воронцов, А.В.Корябин, В.И.Шмальгаузен. Управляемые оптические системы, М., Наука, 1988.
- [5] O.Bryngdahl, F.Wyrowski. Digital holography- Computer generated holograms. Progress in Optics. Ed.by E.Wolf, v.28, pp.3-86 (1990)
- [6] Л.Д.Досколович, Н.Л.Казанский, И.Н.Сисакян, В.А.Сойфер, С.И.Харитонов. Фокусировка лазерного излучения на трехмерную поверхность вращения. Компьютерная оптика, М., МЦНТИ, вып.12, 8–14 (1992)
- [7] V.V.Kotlyar, I.V.Nikolsky, V.A.Soifer. An algorithm for calculating multichannel formers of Gaussian modes. Optik 98(1) 26-30 (1994)
- [8] N.L.Kazanskiy, V.V.Kotlyar, V.A.Soifer. Computer-aided design of diffractive optical elements. Opt. Eng. 33(10) 3156-3166 (1994)
- [9] В.В.Котляр, С.Н.Хонина. Формирователи бесселевых мод. Материалы 5 международного совещания по обработке изображений и компьютерной оптике, Самара, СГАУ, сс. 41-42 (1994)
- [10] М.А.Голуб, Л.Л.Досколович, Н.Л.Казанский, И.Н.Сисакян, В.А.Сойфер, С.И.Харитонов. Метод согласованных прямоугольников для расчета фокусаторов в плоскую область. Компьютерная оптика, М., МЦНТИ, вып.10-11, сс. 100-110 (1992)
- [11] M.A.Golub, L.L.Doskolovich, N.L.Kazansky, S.I.Kharitonov, V.A.Soifer. Computer generated diffractive multi-focal lens. J.Mod.Opt. 39(6) 1245-1251 (1992)
- [12] S.N.Khonina, V.V.Kotlyar, V.A.Soifer. Diffraction computation of focusator into a longitudinal segment and multifocal lens. Proceeding SPIE, v.1780, pp.263-272 (1993)
- [13] А.П.Прудников, Ю.А.Брычков, О.И.Маричев. Интегралы и ряды. Специальные функции, М., Наука, 1983.

Приложение.

Приведем доказательство сходимости в среднем итеративного алгоритма типа (24)– (26), но в одномерном случае для простоты. При этом пусть функции разложения $U_{n}(x)$ являются ортонормированным базисом:

$$\int_{-a}^{a} U_n(x) \cdot U_m^*(x) \,\mathrm{d}\, x = \delta_{mn} \tag{\Pi1}$$

Введем обозначения:

$$A_{p+1}(x)e^{iT_{p+1}(x)} = \sum_{n=0}^{\infty} B_n e^{iD_{n,p}} U_n(x)$$
(II2)

$$A_{0}(x)e^{iT_{p}(x)} = \sum_{n=0}^{\infty} \left| C_{n,p} \right| e^{iD_{n,p}} U_{n}(x)$$
(II3)

где $A_0(x)$ — амплитуда освещающего ДОЕ пучка света, $A_p(x)$ и $T_p(x)$ — амплитуда и фаза светового поля в плоскости ДОЕ, рассчитанные на *p*-ом шаге итераций, B_n — произвольно заданные неотрицательные числа, $|C_{n,p}|$ и $D_{n,p}$ — модуль и фаза *n*-го коэффициента в разложении (18), рассчитанные на *p*-ом шаге итераций по формулам:

$$C_{n,p} = \int_{-a}^{a} A_{0}(x) e^{iT_{p}(x)} U_{n}^{*}(x) dx \qquad (\Pi 4)$$

где [-a,a] – линейный размер ДОЕ. Исходя из равенств Парсеваля

$$\int_{-a}^{a} A_{0}^{2}(x) dx = \sum_{n=0}^{\infty} \left| C_{n,p} \right|^{2}, \quad \int_{-a}^{a} A_{p}^{2}(x) dx = \sum_{n=0}^{\infty} B_{n}^{2}$$
(II5)

и из неравенства треугольника для любых комплексных чисел Z и W.

$$\left|Z\right| - \left|W\right| \le \left|Z - W\right| \tag{I16}$$

нетрудно убедится в справедливости следующей цепочки неравенств

$$\sum_{n=0}^{\infty} \left\| C_{n,p+1} \right\| - B_n \right\|^2 = \sum_{n=0}^{\infty} \left\| C_{n,p+1} \right\| e^{iD_{n,p+1}} - B_n e^{iD_{n,p+1}} \Big\|^2 \le \\ \le \sum_{n=0}^{\infty} \left\| C_{n,p+1} \right\| e^{iD_{n,p+1}} - B_n e^{iD_{n,p}} \Big\|^2 = \int_{-a}^{a} \left| A_0(x) e^{iT_{p+1}(x)} - A_{p+1}(x) e^{iT_{p+1}(x)} \right|^2 dx \le$$

$$\le \int_{-a}^{a} \left| A_0(x) e^{iT_p(x)} - A_{p+1}(x) e^{iT_{p+1}(x)} \right\|^2 dx = \sum_{n=1}^{\infty} \left\| C_{n,p} \right\| e^{iD_{n,p}} - B_n e^{iD_{n,p}} \Big\|^2 = \sum_{n=0}^{\infty} \left\| C_{n,p} \right\| - B_n \Big\|^2$$
(II7)

Из уравнения (П7) следует неравенство

$$\sum_{n=0}^{\infty} \left\| C_{n,p+1} \right\| - B_n \right\|^2 = \sum_{n=0}^{\infty} \left\| C_{n,p} \right\| - B_n \Big\|^2 \tag{I18}$$

которое показывает, что независимо от начальной оценки фаз коэффициентов разложения (18) их модули с ростом числа итераций будут приближаться к произвольным заданным числам B_n .

Iterative calculation of diffractive optical elements focusing into a threedimensional domain and onto the surface of the body of rotation

V.V. Kotlyar, S.N. Khonina, V.A. Soifer

Abstract

There exist iterative methods for calculating phase diffraction optical elements (DOEs) that focus laser radiation into plane figures (images) [1,2]. To calculate the DOE in three-dimensional figures, the figure is split into N planes, thus the task is reduced to the calculation of DOE forming flat images. In [3,4] various approaches were proposed.

Using a different approach, this paper considers iterative methods for calculating phase DOEs focusing laser radiation into a three-dimensional domain and onto the surface of the body of rotation. *Citation*: Kotlyar VV, Khonina SN, Soifer VA. Iterative calculation of diffractive optical

elements focusing into a three-dimensional domain and onto the surface of the body of rotation. Computer Optics 1995; 14-15(2): 72-84.

References

- [1] Hirsch PM, Jordan JA, Lesem LB. Method of marking an object dependent diffuser. Patent U.S. 3619022; 1971.
- [2] Gerchberg RW, Saxton WD. A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik; 1972; 35(2): 237-246.
- [3] Leseberg D. Computer-generated three-dimensional image holograms. Appl. Opt.; 1992; 31(2): 223-229.
- [4] Vorontsov MA, Koryabin AV, Shmalgauzen VI. Controlled optical systems; Moscow: Nauka Publisher, 1988.
- [5] Bryngdahl O, Wyrowski F. Digital holography. Computer generated holograms. Progress in Optics. Ed. Wolf E; 1990; 28: 3-86.
- [6] Doskolovich LL, Kazansky NL, Sisakyan IN, Soifer VA, Kharitonov SI. Focusing laser radiation on a three-dimensional surface of revolution. Computer Optics; Moscow: ICSTI; 1992; 12: 8-14.
- [7] Kotlyar VV, Nikolsky IV, Soifer VA. An algorithm for calculating multichannel formers of Gaussian modes. Optik; 1994; 98(1): 26-30.
- [8] Kazansky NL, Kotlyar VV, Soifer VA. Computer-aided design of diffractive optical elements. Opt. Eng.; 1994; 33(10): 3156-3166.
- [9] Kotlyar VV, Honina SN. Shapers of Bessel mods. Materials of the 5th international meeting on image processing and computer optics, Samara: SSAU; 1994; 41-42.
- [10] Golub MA, Doskolovich LL, Kazansky NL, Sisakyan IN, Soifer VA, Kharitonov SI. Method of matched rectangles for designing focusators to flat areas. Computer optics; Moscow: ICSTI; 1992; 10-11: 100-110.
- [11] Golub MA, Doskolovich LL, Kazansky NL, Kharitonov SI, Soifer VA. Computer generated diffractive multi-focal lens. J.Mod.Opt.; 1992; 39(6): 1245-1251.
- [12] Khonina SN, Kotlyar VV, Soifer VA. Diffraction computation of focusator into a longitudinal segment and multifocal lens. Proceeding SPIE; 1993; 1780: 263-272.
- [13] Prudnikov AP; Brychkov YA, Marichev OI. Integrals and series. Special functions; Moscow: Nauka Publisher; 1983.