ПОСТРОЕНИЕ ИТЕРАЦИОННОГО АЛГОРИТМА РАСЧЕТА ФАЗОВЫХ ДИФРАКЦИОННЫХ ЭЛЕМЕНТОВ, ФОРМИРУЮЩИХ ЗАДАННОЕ ОДНОМОДОВОЕ РАСПРЕДЕЛЕНИЕ, НА ОСНОВЕ ПРИМЕНЕНИЯ МЕТОДА ОБОБЩЕННЫХ ПРОЕКЦИЙ

ВВЕДЕНИЕ

В работах [1,2] описано применение методов компьютерной оптики и цифровой голографии для синтеза фазовых дифракционных оптических элементов (ДОЭ), формирующих волновой фронт заданного модового состава (моданов). В работе [1] предложен метод расчета фазовых моданов, использующий для кодирования комплексной функции пропускания в чисто фазовую обобщенный метод Кирка-Джонса. Применение этого метода позволяет создавать заданное одномодовое распределение с высокой точностью, однако появление паразитных дифракционных порядков, вызванное введением опорной волны в фазу, приводит к низкой дифракционной эффективности элементов, рассчитанных этим методом.

В данной работе предлагается итеративный метод синтеза фазовых ДОЭ, формирующих из гауссова пучка эталонное одномодовое распределение в плоской ограниченной области (например на торце оптического волокна) с удельной мощностью эталонной моды свыше 0.93 и энергетической эффективностью 35-54% при среднеквадратичном отклонении комплексной амплитуды 5-11%, основанный на применении математического метода обобщенных проекций [3,4]. Описано построение проекционного оператора на множество модовых функций с помощью разбиения фокальной плоскости на "полезную" и "вспомогательную" области. Показано, что построенный алгоритм обладает свойством уменьшения ошибки суммарного расстояния. Описана процедура выбора случайного предыскажения во вспомогательной области для увеличения скорости уменьшения ошибки суммарного расстояния. Приведены результаты численных экспериментов.

1. ПОСТАНОВКА ЗАДАЧИ СИНТЕЗА ФАЗОВЫХ ДИФРАКЦИОННЫХ ОПТИЧЕСКИХ ЭЛЕМЕНТОВ, ФОРМИРУЮЩИХ ТРЕБУЕМОЕ РАСПРЕДЕЛЕНИЕ КОМПЛЕКСНОЙ АМПЛИТУДЫ В ЗАДАННОЙ ОБЛАСТИ ФОКАЛЬНОЙ ПЛОСКОСТИ

Пусть элемент с апертурой D освещается плоским пучком с распределением интенсивности I(u,v) (Рис.1). Комплексная амплитуда F(u,v) непосредственно за элементом с фазовой функцией $\phi(u,v)$ имеет вид:

$$F(u,v) = \sqrt{I(u,v)} \exp(i\phi(u,v))$$
 (1)

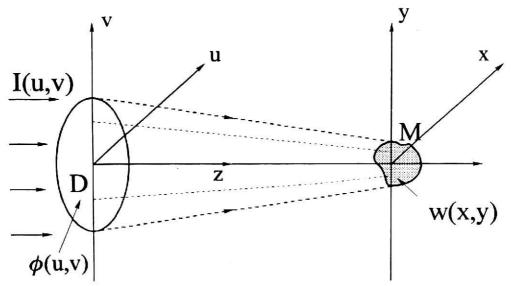


Рис.1. Постановка задачи формирования комплексного распределения в плоской ограниченной области

Задача синтеза фазовых ДОЭ, предназначенных для создания требуемого распределения комплексной амплитуды в заданной области, может быть сформулирована как задача поиска фазовой функции $\phi(u,v)$ по требуемому комплексному распределению w(x,y) в заданной фокальной области М и интенсивности освещающего пучка I(u,v). При соблюдении условий параксиального приближения связь комплексной амплитуды F(u,v) с фокальным комплексным распределением f(x,y) описывается интегральным преобразованием Фурье:

$$f(x,y) = \mathcal{J}(F(u,v))$$

$$F(u,v) = \mathcal{J}^{-1}(f(x,y))$$
(2)

С учетом (2) и линейности преобразования Фурье, можем переформулировать задачу синтеза фазовых ДОЭ, предназначенных для создания требуемого распределения комплексной амплитуды в заданной области, как задачу поиска такой функции f(x,y), которая удовлетворяя условию $\iint\limits_{M} \left|f(x,y)-w(x,y)\right|^2 dxdy = 0$, наложенному целевым назначени-

ем ДОЭ на фокальное комплексное распределение, имела бы амплитуду Фурье-спектра $C\sqrt{I(u,v)}$, где C - константа, выбираемая из условия сохранения энергии освещающего пучка.

2. ПРИМЕНЕНИЕ МАТЕМАТИЧЕСКОГО МЕТОДА ОБОБЩЕННЫХ ПРОЕКЦИЙ К ПОСТРОЕНИЮ ИТЕРАТИВНОЙ ПРОЦЕДУРЫ РАСЧЕТА ФАЗОВЫХ ДИФРАКЦИОННЫХ ЭЛЕМЕНТОВ

Математический метод обобщенных проекций был разработан и строго обоснован для восстановления функции по имеющийся априорной информации [3,4]. Метод основан на построении математических проекций на замкнутые множества, соответствующие ограничениям, наложенным на функцию и ее Фурье-спектр. Для любого замкнутого мно-

жества G_i в пространстве L_2 функция $g=P_ih$, $g\in G_i$ может быть названа проекцией h на G_i если

$$||\mathbf{g} - \mathbf{h}|| = \min_{\mathbf{z} \in G_i} ||\mathbf{z} - \mathbf{h}|| \tag{3}$$

Оператор P_i будем называть проекционным оператором на множество G_i . Пусть известны два свойства функции f, которые относят ее к замкнутым множествам G_1 , G_2 . Тогда решением задачи восстановления будет являться функция $f \in G_0$, где:

$$\mathbf{G}_0 = \bigcap_{i=1,2} \mathbf{G}_i \tag{4}$$

Отметим, что в случае, если G_0 является пустым множеством, решения существовать не будет, в случае, если G_0 содержит только один элемент, решение единственно, и если G_0 содержит более одного элемента, любой элемент G_0 может быть выбран в качестве решения.

В работе [3] для нахождения функции f было предложено использовать рекурсивную процедуру

$$f_{n+1} = T_{1,n} T_{2,n} f_n, (5)$$

где f_0 - выбранное начальное приближение, а оператор $T_{i,n}$ определен следующим образом

$$T_{i,n} = E + \lambda_{i,n} (P_i - E), i = 1,2$$
 (6)

где Е - единичный оператор и $\lambda_{1,n}$, $\lambda_{2,n}$ - параметры релаксации, вводимые в общем случае для повышения скорости поиска точки f. Если хотя бы одно из множеств G_1, G_2 не является выпуклым, алгоритм (5) обладает лишь свойством уменьшения ошибки суммарного расстояния [3]

$$J(f_{n+1}) \le J(f_n) \tag{7}$$

где

$$J(f_n) = ||P_1 f_n - f_n|| + ||P_2 f_n - f_n||$$
(8)

Для построения алгоритма (5) расчета фазовых ДОЭ естественно выбрать в качестве G_1 множество функций f(x,y) с амплитудой Фурье-спектра $C\sqrt{I(u,v)}$, а множество G_2 будет определяться функциональным назначением ДОЭ. Для расчета ДОЭ, предназначенного для создания требуемого комплексного распределения w(x,y) в заданной фокальной области M радиуса R_{foc} в качестве множества G_2 мы можем определить замкнутое множество:

$$G_{2} = \left\{ f(x,y) : \iint_{r \le R_{foc}} |f(x,y) - w(x,y)|^{2} dxdy = 0; \iint_{r \ge R_{0}} |f(x,y)|^{2} dxdy = 0 \right\}$$
(9)

где $\mathbf{r} = \sqrt{\mathbf{x}^2 + \mathbf{y}^2}$, а \mathbf{R}_0 определяет размер вспомогательной области, содержащей свободные параметры, необходимые для работы алгоритма (5). В [3] показано, что оператор

$$P_{1}f = \Im\left(C\sqrt{I(u,v)} \exp\left(i \arg\left(F(u,v)\right)\right)\right)$$
(10)

является проекционным оператором на замкнутое множество функций G_1 . Легко показать, что оператор P_2

$$P_{2}f(x,y) = \begin{cases} w(x,y) & r \leq R_{foc} \\ f(x,y) & R_{foc} < r < R_{0} \\ 0 & r \geq R_{0} \end{cases}$$
(11)

является проекционным на множество G_2 . В этом случае свойство (7) описывает уменьшение отклонения формируемого комплексного распределения от эталонного в ходе итерационного процесса. Для расчета фазовых ДОЭ различного назначения широкое распространение получили итерационные алгоритмы типа Герчберга-Сакстона [5,6]. В некоторых случаях обобщенный вариант данного алгоритма представляет собой частный случай применения метода обобщенных проекций с соответствующим выбором множества G_2 , определяемым функциональным назначением ДОЭ.

3. ИТЕРАЦИОННЫЙ РАСЧЕТ ДИФРАКЦИОННОГО ОПТИЧЕСКОГО ЭЛЕМЕНТА, ФОРМИРУЮЩЕГО ТРЕБУЕМОЕ МОДОВОЕ РАСПРЕДЕЛЕНИЕ В ЗАДАННОЙ ФОКАЛЬНОЙ ОБЛАСТИ

В данной работе исследовалось применение итерационного алгоритма (5) с операторами (10), (11) к синтезу дифракционных оптических элементов, формирующих из плоского пучка с гауссовым распределением интенсивности

$$I(u, v) = \exp\left[-\frac{u^2 + v^2}{\sigma^2}\right]$$
 (12)

эталонное распределение w(x,y), описывающее моду лазерного излучения, внутри некоторой области М фокальной плоскости. В качестве эталонного распределения выбиралась одна из модовых функций Гаусса-Эрмита, являющихся собственными функциями оператора распространения когерентного света в оптическом волокне прямоугольного сечения [1]

$$w(x,y) = E_{pl}H_{p}\left(\frac{\sqrt{2}x}{\omega}\right)H_{l}\left(\frac{\sqrt{2}y}{\omega}\right)\exp\left(-\frac{x^{2}+y^{2}}{\omega^{2}}\right),$$
(13)

где

$$E_{pl} = \frac{1}{\omega} \sqrt{\frac{2}{\pi 2^{p+1} p! 1!}},$$
 (14)

 ω - модовый параметр, $H_n(x)$ - полином Эрмита n-ой степени, (p,l)- порядковые номера модовых функций. Для увеличения скорости уменьшения критерия (8) в качестве начального приближения выбиралась функция

$$f_{0}(x,y) = \begin{cases} w(x,y) & r \leq R_{foc} \\ \mu \chi(x,y) & R_{foc} < r < R_{0}, \\ 0 & r \geq R_{0} \end{cases}$$
(15)

где R_{foc} -радиус полезной области М. В качестве $\chi(x,y)$ выбиралась случайная функция, равномерно распределенная на отрезке $\left[0,\max_{(x,y)\in M} |w(x,y)|\right]$, параметр μ определяет соот-

ношение долей энергии, приходящейся на полезную и вспомогательную области начального приближения.

Введение случайного предыскажения $\mu\chi(x,y)$ во вспомогательную область начального приближения приводит к появлению свободных параметров, необходимых для уменьшения функционала (8), естественной "платой" за это является снижение энергетической эффективности.

4. РЕЗУЛЬТАТЫ ВЫЧИСЛИТЕЛЬНОГО ЭКСПЕРИМЕНТА

В качестве критериев качества восстановления были выбраны энергетическая эффективность, определяемая как

$$e = \frac{\iint\limits_{M} |w'(x,y)|^2 dxdy}{\iint\limits_{D} I(u,v)dudv}$$
 (16)

где w'(x,y)-функция, описывающая распределение в области M, созданное рассчитанным элементом; среднеквадратичное отклонение комплексного распределения от эталонного

$$\delta = \frac{\iint\limits_{M} \left| C_0 w'(x, y) - w(x, y) \right|^2 dxdy}{\iint\limits_{M} \left| w(x, y) \right|^2 dxdy}$$
(17)

и удельная мощность заданной моды в области M

$$\rho = \frac{\left| \iint\limits_{M} w(x, y) C_0 \overline{w'}(x, y) dx dy \right|}{\iint\limits_{M} w^2(x, y) dx dy},$$
(18)

характеризующая возможность использования рассчитанного элемента для создания многоканальной системы связи с модовой селекцией каналов [1], где

$$C_0 = \sqrt{\frac{\iint\limits_{M} |w(x,y)|^2 dxdy}{\iint\limits_{M} |w'(x,y)|^2 dxdy}}$$
(19)

В таблицах 1,2 приведены результаты вычислительного эксперимента, в ходе которого моделировались расчет фазового элемента с помощью 10 итераций алгоритма (5) и формирование им эталонной моды Гаусса-Эрмита из освещающего пучка (12) с разными значениями параметра σ . Вычислительный эксперимент проводился для следующих параметров: длина волны освещающего пучка λ =0.6328 μ m, $R_{\rm foc}$ =0.15mm, R_0 =0.5mm, ω =0.05mm. На рис.2 приведена амплитуда начального распределения f_0 , содержащего эталонное распределение в полезной области и случайное предыскажение во вспомогательной. На рис. 3 приведена фазовая маска рассчитанного элемента. На рис. 4 приведена амплитуда изображения, восстановленного с рассчитанного элемента.

Таблица 1 Результаты численного моделирования итерационного расчета ДОЭ и формирования моды Гаусса-Эрмита (1,0) (μ =0.08).

σ ² ,ΜΜ	e, %	δ,%	ρ
10.0	49.0	5.3	0.973
15.0	40.0	7.4	0.962
20.0	35.1	9.3	0.953

Таблица 2 Результаты численного моделирования итерационного расчета ДОЭ и формирования моды Гаусса-Эрмита (1,0) (μ =0.02).

σ^2 ,MM	e, %	δ,%	ρ
10.0	54.2	8.1	0.959
15.0	43.4	10.0	0.948
20.0	36.7	11.7	0.937

Таблица 3
Результаты численного моделирования формирования моды Гаусса-Эрмита (1,0) моданом, рассчитанным с помощью метода Кирка-Джонса.

σ^2 , MM	e, %	δ,%	ρ
10.0	7.1	0.0	0.999
15.0	15.9	0.0	0.999
20.0	12.4	0.0	0.999

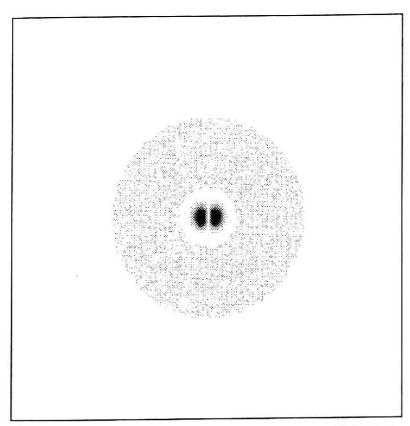


Рис.2. Амплитудное распределение начального приближения

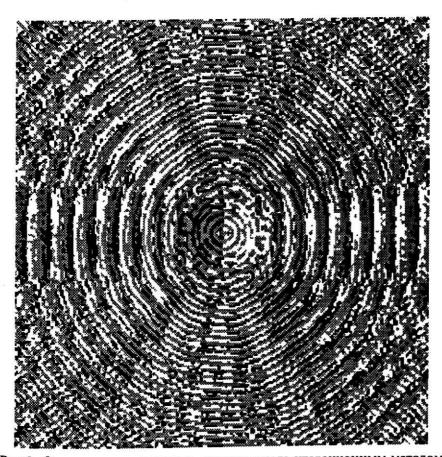


Рис.3. Фазовая маска элемента, рассчитанного итерационным методом

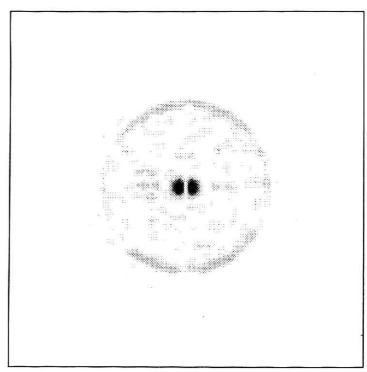


Рис.4. Амплитудное распределение, сформированное элементом, рассчитанным итерационным методом

ЗАКЛЮЧЕНИЕ

Как видно из приведенных в табл. 1, 2 результатов, предлагаемый в данной статье итеративный метод позволяет рассчитывать фазовые дифракционные элементы, формирующие эталонное одномодовое распределение в заданной области фокальной плоскости с энергетической эффективностью 35-54%, и со среднеквадратичным отклонением комплексной амплитуды 5-11%. Сравнение результатов, приведенных в таблицах 1,2,3, показывает, что применение предлагаемого алгоритма позволяет повысить энергетическую эффективность в 2.5-7 раз по сравнению с методом Кирка-Джонса. При этом удельная мощность эталонной моды в сформированном распределении составляет 0.93-0.98, что позволяет использовать элементы, рассчитанные с помощью предлагаемого метода для создания многоканальной связи с модовой селекцией каналов. Необходимо отметить зависимость эффективности алгоритма от параметра гауссова пучка и энергии случайного предыскажения во вспомогательной области. Достоинством алгоритма является также наличие двух путей повышения скорости уменьшения ощибки суммарного расстояния: минимизация функционала (8) относительно параметров релаксации и выбор случайного предыскажения во вспомогательной зоне.

К недостатком алгоритма можно отнести снижение энергетической эффективности от итерации к итерации на 0.5-2.5%. Отметим, что указанный подход применим к решению различных задач, в которых необходимо создать требуемое комплексное распределение в заданной области фокальной плоскости с высокой энергетической эффективностью, например для создания заданного амплитудного распределения на плоском волновом фронте для контроля качества поверхности.

Литература

- 1. Голуб М.А., Сисакян И.Н., Сойфер В.А. Моданы-новые элементы компьютерной оптики. В сб.: Компьютерная оптика, вып. 8.-М.:МЦНТИ, 1990
- 2. Soifer V.A., Golub M.A. Laser Beam Mode Selection by Computer Generated Holograms. CRC Press. 1993
- 3. Stark H. Image Recovery: Theory and Application. Academic Press INC. 1987
- 4. Levi A., Stark H. Image restoration by the method of generalised projections with applications to restoration from magnitude. -J. Opt. Soc. Am., 1984, 1(2), pp. 932-943
- 5. Gerchberg R.W., Saxton W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik, 1972, N 35, p. 237
- 6. Fienup J.R. Iterative method applied to image reconstruction and to computer generated holograms. Proceedings of the SPIE, 1979, V. 207, Applications of Digital Image Processing 3, pp. 2-13

ВНИМАНИЮ ЗАИНТЕРЕСОВАННЫХ ОРГАНИЗАЦИЙ И ПРЕДПРИЯТИЙ, КОММЕРЧЕСКИХ И ЧАСТНЫХ ФИРМ!

Международный центр научной и технической информации предлагает РЕДАКЦИОННО-ИЗДАТЕЛЬСКИЕ И ПОЛИГРАФИЧЕСКИЕ УСЛУГИ

В комплекс услуг входит:

- организация выпуска новых изданий в области науки, техники, производства и экономики;
- подготовка и изготовление издательских оригинал-макетов;
- полиграфическое воспроизведение рукописей изданий требуемыми тиражами;
- размещение и публикация рекламы, а также изготовление рекламных проспектов и буклетов.

Международный центр научной и технической информации гарантирует высокое качество издательской продукции.

Международный центр научной и технической информации готов рассмотреть любые Ваши предложения в области издательской деятельности.

За дальней шей информацией и с предложениями просим обращаться по адресу:

Россия, 125252, Москва, ул. Куусинена, 216, МЦНТИ СОПИ Телефон (095) 198-72-10 Телефакс (095) 9430089

Development of an iterative algorithm for calculating phase diffractive elements forming a single-mode distribution specified on the basis of application of the generalized projections method

M.A. Golub, V.S. Paveliev, V.A.Soifer

Abstract

In this paper, an iterative method is proposed for the synthesis of phase DOEs forming a Gaussian beam into a single-mode reference distribution on a flat bounded area (for example, at the end of an optical fiber) with the specific power of the reference mode exceeding 0.93 and the energy efficiency of 35-54% with a standard deviation of complex amplitude of 5-11 % based on the application of the mathematical method of generalized projections [3,4]. The development of a projection operator onto a multitude of mode functions by dividing the focal plane into a "useful" and an "auxiliary" area is described. It is shown that the algorithm developed reduces the total distance error. The procedure is described for choosing random pre-distortion in the auxiliary area in order to increase the rate of reduction of the total distance error. The results of numerical experiments are presented.

<u>Citation</u>: Golub MA, Paveliev VS, Soifer VA. Development of an iterative algorithm for calculating phase diffractive elements forming a single-mode distribution specified on the basis of application of the generalized projections method. Computer Optics 1995; 14-15(2): 85-93.

References

- [1] Golub MA, Sisakyan IN, Soifer VA. Modans new elements of computer optics; Computer optics; Moscow: ICSTI; 1990; 8.
- [2] Soifer VA, Golub MA. Laser Beam Mode Selection by Computer Generated Holograms; CRC Press; 1993.
- [3] Stark H. Image Recovery: Theory and Application. Academic Press INC; 1987.
- [4] Levi A., Stark H. Image restoration by the method of generalised projections with applications to restoration from magnitude. J. Opt. Soc. Am.; 1984; 1(2): 932-943.
- [5] Gerchberg RW, Saxton WO. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik; 1972; 35: 237.
- [6] Fienup JR. Iterative method applied to image reconstruction and to computer generated holograms. Proceedings of the SPIE; 1979; 207 (Applications of Digital Image Processing 3): 2-13.