НЕЛИНЕЙНОЕ УРАВНЕНИЕ ШРЕДИНГЕРА В ТРЕХ ПРОСТРАНСТВЕННЫХ ИЗМЕРЕНИЯХ

И.В. Алименков

Самарский государственный аэрокосмический университет имени академика С.П. Королева

Найдены в аналитической форме гладкие решения нелинейного уравнения Шредингера в виде уединенных волн для случая трех пространственных измерений. Рассмотрено явление оптической самофокусировки.

Ключевые слова: нелинейное уравнение Шредингера, линейное однородное уравнение первого порядка, полный интеграл, уравнения характеристик, уединенные волны, оптическая самофокусировка.

Введение

Нелинейное уравнение Шредингера находит широкое применение в различных областях физики, например, в нелинейной оптике, физике плазмы, теории сверхпроводимости, физике низких температур. Для одного пространственного измерения теория нелинейного уравнения Шредингера детально разработана [1-3]. В этой статье рассматривается случай трехмерного пространства, т.е. изучается уравнение

$$i \partial \psi / \partial t + \nabla^2 \psi + 2\eta \psi |\psi|^2 = 0, \qquad (1)$$

где $\psi(\mathbf{r},t)$ – комплексная функция, η – вещественный параметр нелинейности.

Основной формализм

Найдем «стационарные» решения вида:

$$\psi(\mathbf{r},t) = \varphi(\mathbf{r})e^{i\varepsilon t}, \qquad (2)$$

где ε – свободный параметр. Подставляя (2) в (1), получим

$$\nabla^2 \varphi - \varepsilon \varphi + 2\eta \varphi |\varphi|^2 = 0. \tag{3}$$

Уравнение (3) допускает решения в классе вещественных функций, где оно принимает вид

$$\nabla^2 \varphi = \varepsilon \varphi - 2\eta \varphi^3 \,. \tag{4}$$

Будем искать решение уравнения (4) в виде сложной функции $\varphi = \varphi(u(\mathbf{r}))$, где $u(\mathbf{r}) = \mathbf{k}(\mathbf{r} - \mathbf{r}_0)/k$. Здесь \mathbf{k} — произвольная векторная постоянная $\mathbf{k} = (k_x, k_y, k_z)$, $k = \sqrt{k_x^2 + k_y^2 + k_z^2}$. Подстановка $\varphi = \varphi(u(\mathbf{r}))$ в (4) даёт

$$\varphi''(u) = \varepsilon \varphi(u) - 2\eta \varphi^{3}(u). \tag{5}$$

Перепишем (5) в виде

$$\varphi''(u) = \partial V(\varphi)/\partial \varphi$$
.

где $V(\phi)=(\epsilon-\eta\phi^2)\phi^2/2$. «Потенциал» $V(\phi)$ неотрицателен при $|\phi|<\sqrt{\epsilon/\eta}$ и имеет нули $\phi_1=0, \ \phi_2=\sqrt{\epsilon/\eta}, \ \phi_3=-\sqrt{\epsilon/\eta}$, поэтому [4] граничными условиями для (4) примем $\phi(\mathbf{r})=\phi_i, i=1,2,3$; $\partial\phi/\partial x_i=0$ при $|\mathbf{r}|=\infty$.

Так как $\partial \phi / \partial x_i = \phi'(u) \partial u / \partial x_i = \phi'(u) k_i / k = 0$ при $| \textbf{\textit{r}} | = \infty$, то это означает, что $\phi'(u) = 0$ при $| \textbf{\textit{u}} | = \infty$.

Умножим последнее уравнение на $\varphi'(u)$ и проинтегрируем. Получим ${\varphi'}^2/2 = V(\varphi) + C$. Из граничных условий следует, что C=0. Интегрируя ещё раз, находим

$$\int d\varphi / \sqrt{2V(\varphi)} = u ,$$

ипи

$$\int \frac{d\varphi}{\varphi \sqrt{\varepsilon - \eta \varphi^2}} = \mathbf{k} (\mathbf{r} - \mathbf{r}_0) / k .$$

Вычисляя интеграл и обращая полученное выражение, имеем

$$\varphi(\mathbf{r}) = \frac{\sqrt{\varepsilon/\eta}}{ch\left(\sqrt{\varepsilon}\mathbf{k}(\mathbf{r} - \mathbf{r}_0)/k\right)}.$$

Очевидно $|\phi| \le \sqrt{\epsilon/\eta}$. В силу симметрии (4) и (5) относительно преобразования $\phi \leftrightarrow -\phi$, решением будет также $\phi_a = -\phi$. Итак, окончательно

$$\psi(\mathbf{r},t) = \frac{\pm \sqrt{\varepsilon/\eta} e^{i\varepsilon t}}{ch\left(\sqrt{\varepsilon}\mathbf{k}(\mathbf{r}-\mathbf{r}_0)/k\right)},$$

или, введя обозначение $\,a=\sqrt{\epsilon/\eta}\,$, откуда $\,\epsilon=a^2\eta$,

$$\psi(\mathbf{r},t) = \frac{\pm a \exp\{ia^2 \eta t\}}{ch(a\sqrt{\eta}\mathbf{k}(\mathbf{r}-\mathbf{r}_0)/k)}.$$

Если $\eta < 0$, т.е. $\eta = -|\eta|$, то (5) принимает вид $\phi''(u) = \epsilon \phi(u) + 2|\eta|\phi^3(u) ,$

или

$$\varphi''(u) = \partial V(\varphi) / \partial \varphi$$
,

где

$$V(\varphi) = (\varphi^2 + \varepsilon/2|\eta|)^2 |\eta|/2$$
.

Несингулярное решение последнего уравнения существует только при $\varepsilon < 0$, т.е. $\varepsilon = -|\varepsilon|$,

$$\varphi''(u) = 2|\eta|\varphi^{3}(u) - |\varepsilon|\varphi(u). \tag{6}$$

Интегрируя (6) тем же способом, что и (5), получим

$$\pm \frac{1}{\sqrt{|\eta|}} \int \frac{d\varphi}{\varphi^2 - |\varepsilon|/2|\eta|} = \mathbf{k}(\mathbf{r} - \mathbf{r}_0)/k .$$

Вычисляя интеграл и обращая полученное выражение, находим

$$\varphi(\mathbf{r}) = \pm \sqrt{\frac{|\varepsilon|}{2|\eta|}} th \left[\sqrt{\frac{|\varepsilon|}{2}} \mathbf{k} (\mathbf{r} - \mathbf{r}_0) / k \right].$$

Вводя обозначение $\sqrt{|\varepsilon|/2|\eta|} = a$, откуда $\varepsilon = -2a^2|\eta|$, окончательно имеем

$$\psi(\mathbf{r},t) = \pm a t h \left[a \sqrt{|\eta|} \mathbf{k} (\mathbf{r} - \mathbf{r}_0) / k \right] \exp \left\{ -i2a^2 |\eta| t \right\}.$$

В классе комплексных функций решение уравнения (3) ищем в виде

$$\varphi(\mathbf{r}) = f(\mathbf{r})e^{iq\mathbf{r}},\tag{7}$$

где $f(\mathbf{r})$ – вещественная функция, $\mathbf{q}=(q_x,q_y,q_z)$ - свободный векторный параметр. Подставляя (7) в (3) и приравнивая к нулю мнимую и вещественную части полученного уравнения, находим

$$(\mathbf{q}\nabla f) = 0 , \tag{8}$$

$$\nabla^2 f = (q^2 + \varepsilon) f - 2\eta f^3. \tag{9}$$

Уравнения (8) и (9) совместны, т.к. (8) является линейным однородным уравнением первого порядка и, как известно [5] из теории таких уравнений, решением уравнения (8) является любая дифференцируемая функция $f = f(s(\mathbf{r}))$, где $s(\mathbf{r})$ — полный интеграл уравнения

$$(\mathbf{q}\nabla s)=0$$
,

или

$$q_x \frac{\partial s}{\partial x} + q_y \frac{\partial s}{\partial y} + q_z \frac{\partial s}{\partial z} = 0.$$
 (10)

Если одна из координатных осей, например ось x, является выделенной среди других, то выбираем переменную x в качестве параметра уравнений характеристик для (10), записав его в виде

$$\frac{\partial s}{\partial x} + \frac{q_y}{q_x} \frac{\partial s}{\partial y} + \frac{q_z}{q_x} \frac{\partial s}{\partial z} = 0.$$

Уравнения характеристик

$$\frac{dx}{1} = \frac{dy}{q_y / q_x} = \frac{dz}{q_z / q_x}$$

или

$$\frac{dy}{dx} = \frac{q_y}{q_x}, \quad \frac{dz}{dx} = \frac{q_z}{q_x}$$

элементарно интегрируются при начальных условиях $y(x_0) = y_0$, $z(x_0) = z_0$:

$$y = \frac{q_y}{q_x}(x - x_0) + y_0, \quad z = \frac{q_z}{q_x}(x - x_0) + z_0.$$

Для нахождения полного интеграла выражаем отсюда начальные данные

$$y_0 = y - \frac{q_y}{q_z}(x - x_0), \quad z_0 = z - \frac{q_z}{q_z}(x - x_0).$$
 (11)

Согласно методу Коши [5], полный интеграл уравнения (10) имеет вид:

$$s(\mathbf{r}) = k_{v} y_{0} + k_{z} z_{0} + k_{0}$$
,

где k_y, k_z — произвольные постоянные, k_0 — аддитивная произвольная постоянная, а y_0 и z_0 выражаются формулой (11), т.е.

$$s(\mathbf{r}) = k_y \left[y - \frac{q_y}{q_x} (x - x_0) \right] + k_z \left[z - \frac{q_z}{q_y} (x - x_0) \right] + k_0.$$

Аддитивную произвольную постоянную k_0 выберем в виде

$$k_0 = -k_v y_0 - k_z z_0 \,,$$

тогла

$$s(\mathbf{r}) = k_y \left[y - y_0 - \frac{q_y}{q_x} (x - x_0) \right] +$$

$$+ k_z \left[z - z_0 - \frac{q_z}{q_x} (x - x_0) \right].$$

В силу линейности уравнения (10) его полный интеграл можно умножить на любой числовой множитель 1/C, что сделано для дальнейшего удобства. Итак.

$$s(\mathbf{r}) = \frac{k_{y} \left(y - y_{0} - (x - x_{0}) q_{y} / q_{x} \right)}{C} + \frac{k_{z} \left(z - z_{0} - (x - x_{0}) q_{z} / q_{x} \right)}{C}.$$
(12)

Подставляя $f = f(s(\mathbf{r}))$ в (9), получим

$$f''(s) \left[\frac{(k_y q_y + k_z q_z)^2}{q_x^2} + k_y^2 + k_z^2 \right] / C^2 =$$

$$= (q^2 + \varepsilon) f(s) - 2\eta f^3(s).$$
(13)

Положим

$$C = \sqrt{(k_y q_y + k_z q_z)^2 + q_x^2 (k_y^2 + k_z^2)} / q_x.$$

Тогда (12) и (13) примут вид:

$$s(\mathbf{r}) = \frac{k_y \left[q_x (y - y_0) - q_y (x - x_0) \right]}{\sqrt{(k_y q_y + k_z q_z)^2 + q_x^2 (k_y^2 + k_z^2)}} + \frac{k_z \left[q_x (z - z_0) - q_z (x - x_0) \right]}{\sqrt{(k_y q_y + k_z q_z)^2 + q_x^2 (k_y^2 + k_z^2)}},$$
(14)

$$f''(s) = (q^2 + \varepsilon) f(s) - 2\eta f^3(s). \tag{15}$$

При $\eta > 0$ несингулярное решение уравнения (15) существует только, если $q^2 + \varepsilon = a^2$. Тогда (15) примет вид:

$$f''(s) = a^2 f(s) - 2\eta f^3(s), \tag{16}$$

совпадающий по форме с уравнением (5). Повторяя ход решения уравнения (5), получим

$$f(\mathbf{r}) = \frac{\pm a / \sqrt{\eta}}{ch \, a \, s(\mathbf{r})} \,,$$

где $s(\mathbf{r})$ выражается громоздкой формулой (14). Так как $\varepsilon = a^2 - q^2$, то окончательно

$$\psi(\mathbf{r},t) = \frac{\pm a/\sqrt{\eta}}{ch \, a \, s(\mathbf{r})} \exp\left\{i\left[\mathbf{q}\mathbf{r} + (a^2 - q^2)t\right]\right\}.$$

Если $\eta < 0$, т.е. $\eta = -|\eta|$, то несингулярное решение уравнения (15) существует только при $q^2 + \varepsilon = -a^2$ и (15) принимает вид:

$$f''(s) = 2|\eta| f^{3}(s) - a^{2}f(s)$$
(17)

совпадающий по форме с уравнением (6). Интегрируя (17) тем же способом, что и (6), находим

$$f(\mathbf{r}) = \pm \frac{a}{\sqrt{2|\eta|}} th \frac{a s(\mathbf{r})}{\sqrt{2}}$$
.

Учитывая, что $\varepsilon = -(a^2 + q^2)$, окончательно имеем

$$\psi(\mathbf{r},t) = \pm \frac{a}{\sqrt{2|\eta|}} th \left[\frac{a s(\mathbf{r})}{\sqrt{2}} \right] \left\{ i \left[\mathbf{qr} - (a^2 + q^2)t \right] \right\}.$$

Нестационарные решения уравнения (1) будем искать в виде

$$\psi(\mathbf{r},t) = \varphi(\mathbf{r},t) \exp\left\{i(\mathbf{q}\mathbf{r} - \omega t + \varphi_0)\right\},\tag{18}$$

где $\varphi(\mathbf{r},t)$ — вещественная функция, \mathbf{q}, ω и φ_0 — свободные параметры. Подставляя (18) в (1) и приравнивая к нулю мнимую и вещественную части полученного уравнения, находим

$$\partial \varphi / \partial t + 2(\mathbf{q} \nabla \varphi) = 0, \tag{19}$$

$$\nabla^2 \varphi = (q^2 - \omega)\varphi - 2\eta \varphi^3. \tag{20}$$

Линейное однородное уравнение первого порядка (19) имеет своим решением любую дифференцируемую функцию $\phi = \phi(s(\mathbf{r},t))$, где $s(\mathbf{r},t)$ - полный интеграл уравнения

$$\partial s / \partial t + 2(\mathbf{q} \nabla s) = 0$$
,

или в развёрнутой форме

$$\frac{\partial s}{\partial t} + 2\left(q_x \frac{\partial s}{\partial x} + q_y \frac{\partial s}{\partial y} + q_z \frac{\partial s}{\partial z}\right) = 0.$$
 (21)

Уравнения характеристик для (21) имеют вид

$$\frac{dt}{1} = \frac{dx}{2q_x} = \frac{dy}{2q_y} = \frac{dz}{2_z},$$

откуда

$$\frac{dx}{dt} = 2q_x$$
, $\frac{dy}{dt} = 2q_y$, $\frac{dz}{dt} = 2q_z$.

Эта система обыкновенных дифференциальных уравнений элементарно интегрируется при начальных условиях $x(0) = x_0$, $y(0) = y_0$, $z(0) = z_0$:

$$x = 2q_x t + x_0$$
, $y = 2q_y t + y_0$, $z = 2q_z t + z_0$.

Выражаем отсюда начальные данные

$$x_0 = x - 2q_x t$$
, $y_0 = y - 2q_y t$, $z_0 = z - 2q_z t$. (22)

Согласно методу Коши, полный интеграл уравнения (21) имеет вид:

$$s = k_x x_0 + k_y y_0 + k_z z_0 + k_0$$
,

где k_x , k_y , k_z — произвольные постоянные, k_0 — аддитивная произвольная постоянная, а x_0 , y_0 , z_0 — выражены согласно (22), т.е.

$$s = k_{y}(x-2q_{y}t) + k_{y}(y-2q_{y}t) + k_{z}(z-2q_{z}t) + k_{0}$$

Аддитивную произвольную постоянную \boldsymbol{k}_0 выберем в виде

$$k_0 = -k_x x_0 - k_y y_0 - k_z z_0,$$

тогла

$$s = k_x (x - x_0 - 2q_x t) + k_y (y - y_0 - 2q_y t) + k_z (z - z_0 - 2q_z t),$$

что можно записать в векторной форме

$$s = \mathbf{k}(\mathbf{r} - \mathbf{r}_0 - 2\mathbf{q}t). \tag{23}$$

В силу линейности уравнения (21) его решение (23) можно умножить на любой числовой множитель 1/С, что сделано для дальнейшего удобства. Итак, окончательно

$$s(\mathbf{r},t) = \mathbf{k}(\mathbf{r} - \mathbf{r}_0 - 2\mathbf{q}t)/C. \tag{24}$$

Подставляя $\varphi = \varphi(s(\mathbf{r},t))$, где $s(\mathbf{r},t)$ - определяется формулой (24) в (20), получим

$$\varphi''(s)\frac{k^2}{C^2} = (q^2 - \omega)\varphi(s) - 2\eta\varphi^3(s).$$
 (25)

Положим $C=k=\sqrt{k_x^2+k_y^2+k_z^2}$. Тогда (24) и (25) примут вид

$$s(\mathbf{r},t) = \mathbf{k}(\mathbf{r} - \mathbf{r}_0 - 2\mathbf{q}t)/k , \qquad (26)$$

$$\varphi''(s) = (q^2 - \omega)\varphi(s) - 2\eta\varphi^3(s). \tag{27}$$

При $\eta > 0$ полагаем $q^2 - \omega = a^2$ и (27) принимает вид:

$$\varphi''(s) = a^2 \varphi(s) - 2\eta \varphi^3(s)$$
,

совпадающий с уравнением (16), и мы можем сразу записать его решение

$$\varphi(\mathbf{r},t) = \frac{\pm a/\sqrt{\eta}}{ch \, a \, s(\mathbf{r},t)} = \frac{\pm a/\sqrt{\eta}}{ch \left[a\mathbf{k}(\mathbf{r} - \mathbf{r}_0 - 2\mathbf{q}t)/k \right]}.$$

Так как $\omega = q^2 - a^2$, то окончательно

$$\psi(\mathbf{r},t) = \frac{\pm a \exp\left\{i\left[\mathbf{qr} - (q^2 - a^2)t + \varphi_0\right]\right\}}{\sqrt{\eta} ch\left[a\mathbf{k}(\mathbf{r} - \mathbf{r}_0 - 2\mathbf{q}t)/k\right]}$$

Если принять здесь $\mathbf{q}=(q,0,0)$, $\mathbf{k}=(k,0,0)$, то получим известное решение одномерного нелинейного уравнения Шредингера.

При $\eta < 0$, т.е. $\eta = -|\eta|$ полагаем $q^2 - \omega = -a^2$ и (27) принимает вид:

$$\varphi''(s) = 2|\eta|\varphi^3(s) - a^2\varphi(s)$$

совпадающий с уравнением (17). Следовательно,

$$\varphi(\mathbf{r},t) = \frac{\pm a}{\sqrt{2|\eta|}} th \frac{a}{\sqrt{2}} s(\mathbf{r},t) =$$

$$= \frac{\pm a}{\sqrt{2|\eta|}} th \frac{a\mathbf{k}(\mathbf{r} - \mathbf{r}_0 - 2\mathbf{q}t)}{\sqrt{2}k}$$

Учитывая, что $\omega = q^2 + a^2$, окончательно имеем

$$\psi(\mathbf{r},t) = \frac{\pm a}{\sqrt{2|\eta|}} th \frac{a\mathbf{k}(\mathbf{r} - \mathbf{r}_0 - 2\mathbf{q}t)}{\sqrt{2}k} \times \exp\left\{i\left[\mathbf{q}\mathbf{r} - (q^2 + a^2)t + \varphi_0\right]\right\}$$

В приведенных решениях амплитудные функции имеют вид гиперболических секанса и тангенса, аргументами которых являются линейные функции $\mathbf{s}(\mathbf{r})$ или $\mathbf{s}(\mathbf{r},t)$. Для нахождения решений, зависящих от нелинейных функций $\mathbf{s}(\mathbf{r})$ или $\mathbf{s}(\mathbf{r},t)$ нужно вместо полных интегралов линейных однородных уравнений первого порядка использовать особые интегралы.

Проиллюстрируем сказанное на примере решений вида (18), сводящихся к уравнениям (19) и (20). Найдем особый интеграл уравнения (19). Для этого исключим стандартным способом [5] произвольные постоянные k_x , k_y , k_z из полного интеграла (26). Дифференцируя (26) по k_x , k_y , k_z и приравнивая производные к нулю, найдем

$$s(\mathbf{r},t) = \frac{1}{2} \int (x - x_0 - 2q_x t)^2 + (y - y_0 - 2q_y t)^2 + (z - z_0 - 2q_z t)^2}.$$
 (28)

Подставив $\varphi = \varphi(s)$ в (20), получим

$$\varphi''(s) + \frac{2\varphi'(s)}{s} = a^2 \varphi - 2\eta \varphi^3.$$
 (29)

Аналитические решения этого обыкновенного дифференциального уравнения автору неизвестны, однако легко найти приближенное решение при больших значениях *s* (что является оправданным в нелинейной оптике, где расстояния измеряются в единицах длин волн). Тогда вторым слагаемым в левой части (29) можно пренебречь и получим уже знакомое уравнение

$$\varphi''(s) = a^2 \varphi(s) - 2\eta \varphi^3(s)$$
,

имеющее решение

$$\varphi(\mathbf{r},t) = \frac{a/\sqrt{\eta}}{ch \, as(\mathbf{r},t)} \; ,$$

где $s(\mathbf{r},t)$ выражается формулой (28).

В стационарной теории оптической самофокусировки ключевую роль играет уравнение [6]

$$i2k_0 \frac{\partial E_0}{\partial x} + \nabla_{y,z}^2 E_0 + 2\eta |E_0|^2 E_0 = 0, \qquad (30)$$

где $E_0({\bf r})$ — комплексная огибающая электрического поля, k_0 — главная часть волнового вектора ${\bf k}=(k_0+q_x,\ q_y,\ q_z)\,,\ q_x,\ q_y,\ q_z$ — малые поправки к ${\bf k}_0=(k_0,0,0),\ \eta$ — коэффициент нелинейности среды.

Уравнение (30) является «двумерным» нелинейным уравнением Шредингера, в котором роль «времени» играет x/2 k_0 . Другими словами, (30) записано на \mathbb{R}^3 , тогда как (1) на \mathbb{R}^{3+l} .

Если искать решение в виде

$$E_0(\mathbf{r}) = f(\mathbf{r})e^{iq\mathbf{r}}, \tag{31}$$

где $f(\mathbf{r})$ – вещественная функция, то подстановка (31) в (30) приводит к двум уравнениям:

$$k_0 \frac{\partial f}{\partial x} + q_y \frac{\partial f}{\partial y} + q_z \frac{\partial f}{\partial z} = 0 , \qquad (32)$$

$$\nabla_{yz}^2 f = (2k_0 q_x + q_y^2 + q_z^2) f - 2\eta f^3.$$
 (33)

Уравнение (32) имеет своим решением любую дифференцируемую функцию $f = f(s(\mathbf{r}))$, где $s(\mathbf{r})$ – полный или особый интеграл уравнения

$$\frac{\partial s}{\partial x} + \frac{q_y}{k_0} \frac{\partial s}{\partial y} + \frac{q_z}{k_0} \frac{\partial s}{\partial z} = 0.$$
 (34)

Полный $s(\mathbf{r})$ и особый $s_0(\mathbf{r})$ интегралы уравнения (34) найдены в [7]:

$$s(\mathbf{r}) = \frac{b_{y} \left[k_{0} (y - y_{0}) - q_{y} (x - x_{0}) \right]}{k_{0} \sqrt{b_{y}^{2} + b_{z}^{2}}} + \frac{b_{z} \left[k_{0} (z - z_{0}) - q_{z} (x - x_{0}) \right]}{k_{0} \sqrt{b_{y}^{2} + b_{z}^{2}}},$$
(35)

$$s_0(\mathbf{r}) \sqrt{\left(y - y_0 - \frac{q_y}{k_0}(x - x_0)\right)^2 + \left(z - z_0 - \frac{q_z}{k_0}(x - x_0)\right)^2}, (36)$$

где x_0 , y_0 , z_0 — координаты центра пучка, b_y , b_z — произвольные постоянные. Подстановка $f = f(s(\mathbf{r}))$ в (33) дает

$$f''(s) = (2k_0q_x + q_y^2 + q_z^2)f(s) - 2\eta f^3(s).$$

Вводя обозначение

$$a = \sqrt{2k_0q_x + q_y^2 + q_z^2} ,$$

последнее уравнение приводим к виду (16), имеющему решение

$$f(\mathbf{r}) = \frac{\pm a}{\sqrt{\eta} \, ch \, as(\mathbf{r})} \,. \tag{37}$$

Направим ось x через центр пучка. Тогда $y_0=z_0=0$. С учетом (35) приходим к выводу, что вещественная огибающая (37) в любом сечении пучка x=const является гладкой ограниченной функцией, быстро стремящейся к нулю при удалении от оси x по всем направлениям, кроме прямой $y=c_1z+c_2$, определяемой из уравнения $s(\mathbf{r})=0$, вдоль которой поле остается постоянным. В центральном сечении $x=x_0$ эта прямая имеет вид $b_yy+b_zz=0$. Таким образом, решение (37) описывает частично сфокусированный пучок.

Подстановка $f = f(s_0(r))$ в (33) приводит к неавтономному уравнению

$$f''(s_0) + \frac{f'(s_0)}{s_0} = a^2 f(s_0) - 2\eta f^3(s_0), \qquad (38)$$

имеющему при больших значениях s_{θ} (в единицах длин волн) асимптотическое решение

$$f(s_0(\mathbf{r})) = \frac{\pm a}{\sqrt{\eta} \ ch \ a \ s_0(\mathbf{r})} \ , \tag{39}$$

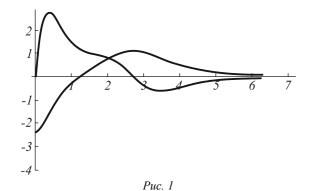
которое в любом сечении пучка x=const быстро стремится к нулю при удалении от оси x по всем направлениям, т.е. пучок является полностью сфокусированным. Однако, поскольку (39) является асимптотическим решением, остается открытым вопрос о поведении функции (39) вблизи центра пучка. Точное решение уравнения (38) не должно иметь сингулярностей, чтобы быть физически допустимым решением.

Для численного решения, уравнение (38) с помощью преобразования $\xi = as_0$, $f = \frac{a}{\sqrt{\eta}}u$ приво-

дим к безразмерному виду

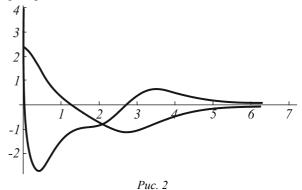
$$u''(\xi) + \frac{u'(\xi)}{\xi} = u(\xi) - 2u^{3}(\xi).$$
 (40)

На рис. 1 и 2 представлены численные решения уравнения (40) и их производные. Выходящие из начала координат кривые – графики производных $u'(\xi)$ соответствующих решений $u(\xi)$.



Из графиков следует, что решения уравнения (40) являются гладкими ограниченными функциями, асимптотически стремящимися к нулю, а также, что

уравнение (40) обладает симметрией относительно преобразования $u \leftrightarrow -u$.



r uc. 2

Благодарности

Работа выполнена при поддержке Министерства образования и науки РФ, правительства Самарской области и Американского фонда гражданских исследований и развития (CRDF Project SA-014-02) в рамках российско-американской программы «Фундаментальные исследования и высшее образование» (BRHE, REC N 14).

Заключение

Найдены в аналитической форме гладкие решения нелинейного уравнения Шредингера в виде уединенных волн для случая трех пространственных измерений. Рассмотрено явление оптической самофокусировки.

Литература

- 1. Тахтаджян Л.А., Фаддеев Л.Д. Гамильтонов подход в теории солитонов // М.: Наука, 1986.
- Додд Р., Эйлбек Дж., Гиббон Дж., Моррис Х. Солитоны и нелинейные волновые уравнения. М.: «Мир», 1988.
- Ньюэлл А. Солитоны в математике и физике // М.: «Мир», 1989.
- Раджараман Р. Солитоны и инстантоны в квантовой теории поля // М.: «Мир», 1985.
- Степанов В.В. Курс дифференциальных уравнений // М.: Государственное издательство техникотеоретической литературы, 1953.
- Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред // М.: «Наука», 1982.
- Алименков И.В. Точно решаемые математические модели в нелинейной оптике // Компьютерная оптика. 2005. № 28. С. 45.

Nonlinear Schroedinger equation in three spatial variables

I.V. Alimenkov ¹
¹ Samara State Aerospace University named after academician S.P. Korolev

Abstract

Smooth analytical solutions are found for the nonlinear Schrödinger equation in the form of solitary waves for the case of three spatial variables. The phenomenon of optical self-focusing is considered.

Keywords: Schroedinger equation, optical self-focusing.

<u>Citation</u>: Alimenkov, IV. Nonlinear Schroedinger equation in three spatial variables. Computer Optics 2005; 28: 55-59.

References

- [1] Takhtadzhyan LA, Faddeev LD. The Hamiltonian method in the theory of solitons [In Russian]. Moscow: Nauka Publisher, 1986
- [2] Dodd RK, Morris HC, Eilbeck JC, Gibbon JD. Soliton and nonlinear wave equations. London, New York: Academic Press Inc; 1982.
- [3] Newell AC. Solitons in mathematics and physics. Philadelphia, PA: Society for Industrial and Applied Mathematics; 1985.
- [4] Rajaraman R. Solitons and instantons: An introduction to solitons and instantons in quantum field theory. New York: Elsevier Science BV; 1982.
- [5] Stepanov VV. Course of differential equations. Moscow: State Publishing House of Technical and Theoretical Literature; 1953.
- [6] Landau LD, Lifshitz EM. Electrodynamics of continuous media. 2nd ed. Oxford: Pergamon Press Ltd; 1984.
- [7] Alimenkov IV. Exactly solvable mathematical models in nonlinear optics. Computer Optics 2005; 28: 45-54.