(38-4) 04 * <<>> * Russian * English * Content * All Issues

Sharp focusing of a mixture of radially and linearly polarized beams using a binary microlens
S.S. Stafeev, L. O’Faolain, M.I. Shanina, A.G. Nalimov, V.V. Kotlyar

 

Image Processing Systems Institute, Russian Academy of Sciences,
Samara State Aerospace University

PDF, 840 kB

Full text of article: Russian language.

DOI: 10.18287/0134-2452-2014-38-4-606-613

Pages: 606-613.

Abstract:
Using a binary microlens of diameter 14 µm and focal length 532 nm (numerical aperture NA = 0.997), we focus a 633-nm laser beam composed of a mixture of radially and linearly polarized waves obtained by reflection of a linearly polarized Gaussian beam from a gold-coated subwavelength binary four-zone diffractive optical microelement (micropolarizer) of size 100×100 µm to a near-surface, near-circular focal spot of size (0.37±0.02)λ and (0.39±0.02)λ, where λ is wavelength. A linearly polarized light beam forms an elliptical focal spot with diameters (0.35±0.02)λ and (0.41±0.02)λ. Both focal spots have the area of 0.133λ². Subwavelength focusing using two microoptical components (a binary microlens and a micropolarizer) is suggested for the first time.

Key words:
radial polarization, reflective subwavelength diffractive grating, binary optics, micro-optics, subwalength focal spot, near-field microscopy.

Citation:
Stafeev SS, O’Faolain L, Shanina MI, Nalimov AG, Kotlyar VV. Sharp focusing of a mixture of radially and linearly polarized beams using a binary microlens. Computer Optics 2014; 38(4): 606-613. DOI: 10.18287/0134-2452-2014-38-4-606-613.

References:

  1. Kotlyar, V.V. Design of diffractive optical elements modulating polarization / V.V. Kotlyar, O.K. Zalyalov // Optik. – 1996. – V. 103(3). – P. 125-130.
  2. Bomzon, Z. Pancharatnam-Berry phase in space-variant polarization-state manipulations with subwavelength gratings / Z. Bomzon, V. Kleiner, E. Hasman // Optics Letters. – 2001. – V. 26(18). – P. 1424-1426.
  3. Bomzon, Z. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings / Z. Bomzon, G. Biener, V. Kleiner, E. Hasman // Optics Letters. – 2002. – V. 27(5). – P. 285-287.
  4. Niv, A. Formation of linearly polarized light with axial symmetry by use of space-variant subwavelength gratings / A. Niv, G. Biener, V. Kleiner, E. Hasman // Optics Letters. – 2003. – V. 28(7). – P. 510-512.
  5. Levy, U. Engineering space-variant inhomogeneous media for polarization control / U. Levy, C.-H. Tsai, L. Pang, Y. Fainman // Optics Letters. – 2004. – V. 29(15). – P. 1718-1720.
  6. Lerman, G.M. Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm / G. M. Lerman, U. Levy // Optics Letters. – 2008. – V. 33(23). – P. 2782-2784.
  7. Mehta, A. Spatially polarizing autocloned elements / A. Mehta, J.D. Brown, P. Srinivasan, R.C. Rumpf, E.G. Johnson // Optics Letters. – 2007. – V. 32(13). – P. 1935-1937.
  8. Nalimov, A.G. Reflected four-zones subwavelenghth mictooptics element for polarization conversion from linear to radial / A.G. Nalimov, L. O'Faolain, S.S. Stafeev, M.I. Sha­nina, V.V. Kotlyar // Computer Optics. – 2014. – V. 38(2). – P. 229-236. – ISSN 0134-2452. – (In Russian).
  9. Kotlyar, V.V. Tight focusing with a binary microaxicon /V.V. Kot­lyar, S.S. Stafeev, L. O’Faolain, V.A. Soifer // Optics Letters. – 2011. – V. 36(16). – P. 3100-3102.
  10. Stafeev, S.S. Subwavelength focusing using fresnel zone plate with focal length of 532nm / S.S. Stafeev, L. O'Faolain, M.I. Shanina, V.V. Kotlyar, V.A. Soifer // Computer Optics. – 2011. – V. 35(4). – P. 460-461. – ISSN 0134-2452. – (In Russian).
  11. Kotlyar, V.V. Analysis of the shape of a subwavelength focal spot for the linearly polarized light / V.V. Kotlyar, S.S. Stafeev, Y. Liu, L. O’Faolain, A.A. Kovalev // Applied Optics. – 2013. – V. 52(3). – P.330-339.
  12. Yuan, G.H. Nondiffracting transversally polarized beam / G.H. Yuan, S.B. Wei, X.-C. Yuan // Optics Letters. – 2011. – V. 36(17). – P. 3479-3481.
  13. Li, X. Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam / X. Li, Y. Cao, M. Gu // Optics Letters. – 2011. – V. 36(13). – P. 2510-2512.
  14. Lin, J. Achievement of longitudinally polarized focusing with long focal depth by amplitude modulation / J. Lin, K. Yin, Y. Li, J. Tan // Optics Letters. – 2011. – V. 36(7). – P. 1185-1187.
  15. Lin, H. Generation of an axially super-resolved quasi-spherical focal spot using an amplitude-modulated radially polarized beam / H. Lin, B. Jia, M. Gu // Optics Letters. – 2011. – V. 36(13). – P. 2471-2473.
  16. Stafeev S.S. Special aspects of subwavelength focal spot measurement using near-field optical microscope / S.S. Sta­feev, V.V. Kotlyar // Computer Optics. – 2013. – V. 37(3). – P. 332-340. – ISSN 0134-2452. – (In Russian).
  17. Li, X. Super-resolved pure-transverse focal fields with an enhanced energy density through focus of an azimuthally polarized first-order vortex beam / X. Li, P. Venugopalan, H. Ren, M. Hong, M. Gu // Optics Letters. – 2014. – V. 39(20). – P. 5961-5964.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail:journal@computeroptics.ru; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20