Conversion of a conical wave with circular polarization into a vortex cylindrically polarized beam in a metal waveguide
Kharitonov S.I., Khonina S.N.

Image Processing Systems Institute f RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia

Abstract:
In this paper, we have developed a mathematical base for describing the propagation of waves in a metal waveguide in a cylindrical coordinate system. The transformation of a conical wave with circular polarization into a cylindrically polarized vortex beam is shown on the basis of the expansion of the field in vector cylindrical modes. The results of modeling, based on the expansion in plane waves, qualitatively agree with theoretical calculations.

Keywords:
cylindrical metal waveguide modes, laser impulse, conical wave, circular polarization, vortex cylindrically polarized beams.

Citation:
Kharitonov SI, Khonina SN. Conversion of a conical wave with circular polarization into a vortex cylindrically polarized beam in a metal waveguide. Computer Optics 2018; 42(2): 197-211. DOI: 10.18287/2412-6179-2018-42-2-197-211.

References:

  1. Tyo JS, Goldstein DL, Chenault DB, Shaw JA. Review of passive imaging polarimetry for remote sensing applications. Appl Opt 2006; 45(22): 5453-5469. DOI: 10.1364/AO.45.005453.
  2. Oldenbourg R. Polarized light microscopy of spindles In book: Reider CL, ed. Methods in Cellular Biology. Vol. 61. Mitosis and Meiosis. Chap 10. San Diego, London: Academic Press; 1998. ISBN: ‎978-0-12-544163-6. DOI: 10.1016/S0091-679X(‎08)61981-0.
  3. Khonina SN, Golub I. How low can STED go? Comparison of different write-erase beam combinations for stimulated emission depletion microscopy. JOSA A 2012; 29(10): 2242-2246. DOI: 10.1364/JOSAA.29.002242.
  4. Zhang Y, Lee SYC, Zhang Y, Furst D, Fitzgerald J, Ozcan A. Wide-field imaging of birefringent synovial fluid crystals using lensfree polarized microscopy for gout diagnosis.  Sci Rep 2016; 6: 28793. DOI: 10.1038/srep28793.
  5. Baumann B. Polarization sensitive optical coherence tomography: A review of technology and applications. Appl Sci 2017; 7(5): 474. DOI: 10.3390/app7050474.
  6. Jacques SL, Roman JR, Lee K. Imaging superficial tissues with polarized light. Lasers Surg Med 2000; 26(2): 119-129. DOI: 10.1002/(SICI)1096-9101(2000)26:23.0.CO;2-Y.
  7. Moscoso M, Keller JB, Papanicolaou G. Depolarization and blurring of optical images by biological tissue. JOSA A 2001; 18(4): 948-960. DOI: 10.1364/JOSAA.18.000948.
  8. Yeh P, Gu C. Optics of liquid crystal displays. 2nd ed. Hoboken, NJ: John Wiley and Sons; 2009. ISBN: 978-0-470-18176-8.
  9. Simpson NB, Dholakia K, Allen L, Padgett MJ. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt Lett 1997; 22(1): 52-54. DOI: 10.1364/OL.22.000052.
  10. Soifer VA, Kotlyar VV, Khonina SN. Optical microparticle manipulation: Advances and new possibilities created by diffractive optics. Physics of Particles and Nuclei 2004; 35(6): 733-766.
  11. Agrawal GP. Applications of nonlinear fiber optics. 2nd ed. New York: Academic Press; 2008. ISBN: 978-0-12-374302-2.
  12. Dennis MR, O’Holleran K, Padgett MJ. Singular optics: Optical vortices and polarization singularities. In Book: Wolf E, ed. Progress in optics. London, New York: Elsevier; 2009: 293-363. DOI: 10.1016/S0079-6638(08)00205-9.
  13. Kraus M, Ahmed MA, Michalowski A, Voss A, Weber R, Graf T. Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization. Opt Express 2010; 18(21): 22305-22313. DOI: 10.1364/OE.18.022305.
  14. Hnatovsky C, Shvedov VG, Shostka N, Rode AV, Krolikowski W. Polarization-dependent ablation of silicon using tightly focused femtosecond laser vortex pulses. Opt Lett 2012; 37(2): 226-228. DOI: 10.1364/OL.37.000226.
  15. Kuchmizhak A, Pustovalov E, Syubaev S, Vitrik O, Kulchin Y, Porfirev A, Khonina S, Kudryashov SI, Danilov P, Ionin A. On-fly femtosecond-laser fabrication of self-organized plasmonic nanotextures for chemo- and biosensing applications. ACS Appl Mater Interfaces 2016; 8(37): 24946-24955. DOI: 10.1021/acsami.6b07740.
  16. Majumdar AK, Ricklin JC. Free-space laser communications: principles and advances. New York: Springer Science & Business Media; 2008. ISBN: ‎978-0-387-28652-5.
  17. Huang H, Xie G, Yan Y, Ahmed N, Ren Y, Yue Y, Rogawski D, Willner MJ, Erkmen BI, Birnbaum KM, Dolinar SJ, Lavery MPJ, Padgett MJ, Tur M, Willner AE. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Opt Lett 2014; 39(2): 197-200. DOI: 10.1364/OL.39.000197.
  18. Soifer VA, Korotkova , Khonina SN, Shchepakina . Vortex beams in turbulent media: Review. Computer Optics 2016; 40(5): 605-624. DOI: 10.18287/2412-6179-2016-40-5-605-624.
  19. Durnin J, Miceli JJ Jr, Eberly JH. Diffraction-free beams. Phys Rev Lett 1987; 58(15): 1499-1501.
  20. Kalosha VP, Golub I. Toward the subdiffraction focusing limit of optical superresolution. Opt Lett 2007; 32(24): 3540-3542. DOI: 10.1364/OL.32.003540.
  21. Khonina SN, Ustinov AV. Sharper focal spot for a radially polarized beam using ring aperture with phase jump. Journal of Engineering 2013; 2013: 512971. DOI: 10.1155/2013/512971.
  22. Wang K, Zeng L, Yin Ch. Influence of the incident wave-front on intensity distribution of the nondiffracting beam used in large-scale measurement. Opt Commun 2003; 216(1-3): 99-103. DOI: 10.1016/S0030-4018(02)02307-6.
  23. Leitgeb RA, Villiger M, Bachmann AH, Steinmann L, Lasser T. Extended focus depth for Fourier domain optical coherence microscopy. Opt Lett 2006; 31(16): 2450-2452. DOI: 10.1364/OL.31.002450.
  24. Arimoto R, Saloma C, Tanaka T, Kawata S. Imaging properties of axicon in a scanning optical system. Appl Opt 1992; 31(31): 6653-6657. DOI: 10.1364/AO.31.006653.
  25. Fortin M, Piché M, Borra EF. Optical tests with Bessel beam interferometry. Opt Express 2004; 2(24): 5887-5895. DOI: 10.1364/OPEX.12.005887.
  26. Garces-Chavez V, McGloin D, Melville H, Sibbett W, Dholakia K. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature 2002; 419(6903): 145-147. DOI: 10.1038/nature01007.
  27. Arlt J, Dholakia K, Soneson J, Wright EM. Optical dipole traps and atomic waveguides based on Bessel light beams. Phys Rev A 2001; 63: 063602. DOI: 10.1103/PhysRevA.63.063602.
  28. Skidanov RV, Kotlyar VV, Khonina SN, Volkov AV, Soifer VA. Micromanipulation in higher-order Bessel beams. Optical Memory & Neural Networks 2007; 16(2): 91-98. DOI: 10.3103/S1060992X07020051.
  29. McLeod JH. The axicon: a new type of optical element. JOSA 1954; 44(8): 592-597. DOI: 10.1364/JOSA.44.000592.
  30. Vasara A, Turunen J, Friberg AT. Realization of general nondiffracting beams with computer-generated holograms. JOSA A 1989; 6(11): 1748-1754. DOI: 10.1364/JOSAA.6.001748.
  31. Khonina SN, Porfirev AP, Ustinov AV. Diffractive axicon with tunable fill factor for focal ring splitting. Proc SPIE 2017; 10233: 102331P. DOI: 10.1117/12.2265017.
  32. Khonina SN, Serafimovich PG, Savelyev DA, Pustovoi IA. Diffraction at binary microaxicons in the near field. J Opt Techn 2012; 79(10): 626-631. DOI: 10.1364/JOT.79.000626.
  33. Khonina SN, Karpeev SV, Alferov SV, Savelyev DA, Laukkanen J, Turunen J. Experimental demonstration of the generation of the longitudinal E-field component on the optical axis with high-numerical-aperture binary axicons illuminated by linearly and circularly polarized beams. J Opt 2013; 15(8): 085704. DOI: 10.1088/2040-8978/15/8/085704.
  34. Khonina SN, Savelyev DA. High-aperture binary axicons for the formation of the longitudinal electric field component on the optical axis for linear and circular polarizations of the illuminating beam. JETP 2013; 117(4): 623-630. DOI: 10.1134/S1063776113120157.
  35. Khonina SN, Degtyarev SA. A longitudinally polarized beam generated by a binary axicon. JORR 2015; 36(2): 151-161. DOI: 10.1007/s10946-015-9488-x.
  36. Shiyao F, Shikun Z, Chunqing G. Bessel beams with spatial oscillating polarization. Scientific Reports 2016; 6: 30765. DOI: 10.1038/srep30765.
  37. Khilo N, Al-Saud TS, Al-Khowaiter SH, Al-Muhanna MK, Solonevich S, Kazak N, Ryzhevich A. A high-ef?cient method for generating radially and azimuthally polarized Bessel beams using biaxial crystals. Opt Commun 2012; 285: 4807-4810. DOI: 10.1016/j.optcom.2012.07.130.
  38. Khonina SN, Karpeev SV, Paranin VD, Morozov AA. Polarization conversion under focusing of vortex laser beams along the axis of anisotropic crystals. Phys Lett A 2017; 381: 2444-2455. DOI: 10.1016/j.physleta.2017.05.025.
  39. Khonina SN, Degtyarev SA, Savelyev DA, Ustinov AV. Focused, evanescent, hollow, and collimated beams formed by microaxicons with different conical angles. Opt Express 2017; 25(16): 19052-19064. DOI: 10.1364/OE.25.019052.
  40. Khonina SN, Karpeev SV. Generating inhomogeneously polarized higher-order laser beams by use of diffractive optical elements. JOSA A 2011; 28(10): 2115-2123. DOI: 10.1364/JOSAA.28.002115.
  41. Skidanov RV, Morozov AA. Diffractive optical elements for forming radially polarized light, based on the use stack of Stoletov. Computer Optics 2014; 38(4): 614-618.
  42. Karpeev S, Paranin V, Khonina S. Generation of a controlled double-ring-shaped radially polarized spiral laser beam using a combination of a binary axicon with an interference polarizer. J Opt 2017; 19(5): 055701. DOI: 10.1088/2040-8986/aa640c.
  43. Kawauchi H, Kozawa Y, Sato S, Sato T, Kawakami S. Simultaneous generation of helical beams with linear and radial polarization by use of a segmented half-wave plate. Opt Lett 2008; 33(4): 399-401. DOI: 10.1364/OL.33.000399.
  44. Zhang H, Han Y, Han G. Expansion of the electromagnetic fields of a shaped beam in terms of cylindrical vector wavefunctions. JOSA B 2007; 24(6): 1383-1391. DOI: 10.1364/JOSAB.24.001383.
  45. Khonina SN, Karpeev SV, Alferov SV, Soifer VA. Generation of cylindrical vector beams of high orders using uniaxial crystals. J Opt 2015; 17: 065001. DOI: 10.1088/2040-8978/17/6/065001.
  46. Zhang Y, Wang L, Zheng C. Vector propagation of radially polarized Gaussian beams diffracted by an axicon. JOSA A 2005; 22(11): 2542-2546. DOI: 10.1364/JOSAA.22.002542.
  47. Khonina SN, Ustinov AV, Kovalyov AA, Volotovsky SG. Near-field propagation of vortex beams: models and computation algorithms. Optical Memory and Neural Networks 2014; 23(2): 50-73. DOI: 10.3103/S1060992X14020027.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20