(45-5) 01 * << * >> * Russian * English * Content * All Issues
  
Sharp focusing of beams with V-point polarization singularities
  V.V. Kotlyar 1,2, A.G. Nalimov 1,2, S.S. Stafeev 1,2, A.A. Kovalev 1,2
1 IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
     443001, Samara, Russia, Molodogvardeyskaya 151,
    2 Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34
  PDF, 1738 kB
DOI: 10.18287/2412-6179-CO-884
Pages: 643-653.
Full text of article: Russian language.
 
Abstract:
It is theoretically and  numerically shown that when tightly focusing an n-th order vector light field that has the central V-point (at  which the linear polarization direction is undetermined), the polarization  singularity index n, and a  "flower"-shaped intensity pattern with 2(n-1) lobes it forms a transverse intensity distribution  with 2(n-1) local maxima.  At the same time, a vector light field with the polarization singularity index  -n, which has the form of a  "web" with 2(n+1)  cells generates at the sharp focus a transverse intensity distribution with 2(n+1) local maxima. In the  focal spot, either 2(n-1) or 2(n+1) V-point polarization  singularities with alternating indices +1 or -1 are formed at the intensity  zero.
Keywords:
vector light beam,  topological charge, polarization singularity, optical vortex.
Citation:
  Kotlyar VV, Nalimov AG, Stafeev SS, Kovalev AA. Sharp focusing of beams with V-point polarization singularities. Computer Optics 2021; 45(5): 643-653. DOI: 10.18287/2412-6179-CO-884.
Acknowledgements:
  The work was partly  funded by the Russian Foundation for  Basic Research under grant #18-29-20003 (Section "Polarization  singularity index of the vector field in the initial plane”), the Russian Science Foundation  under grant #18-19-00595 (Section “The number of local intensity maxima at the  focus of a vector field”), and the RF Ministry of Science and Higher Education  within a state contract with the "Crystallography and Photonics"  Research Center of the RAS (Section "Simulation").
References:
  - Liu Z, Liu Y, Ke Y, Liu  Y, Shu W, Luo H, Wen S. Generation of arbitrary vector vortex beams on  hybrid-order Poincare sphere. Photon Res 2017; 5(1): 15.
     
  - Fu S, Zhai Y, Wang T,  Yin C, Gao C. Tailoring arbitrary hybrid Poincare beams through a single hologram.  Appl Phys Lett 2017; 111(21): 211101.
     
  - Zhang  Y, Chen P, Ge S, Wei T, Tang J, Hu W, Lu Y. Spin-controlled massive channels of  hybrid-order Poincare sphere beams. Appl Phys Lett 2020; 117(8): 081101.
     
  - Liu  J, Chen X, He Y, Lu L, Ye H, Chai G, Chen S, Fan D. Generation of arbitrary  cylindrical vector vortex beams with cross-polarized modulation. Res Phys 2020;  19: 103455.
     
  - Arora  G, Deepa S, Khan SN, Senthilkumaran P. Detection of degenerate Stokes index  states. Sci Rep 2020; 10: 20759.
     
  - Arora  G, Rajput R, Senthilkumaran P. Hybrid order Poincare spheres for Stoks  singularities. Opt Lett 2020; 45: 5136-5139.
     
  - Stafeev  SS, Kotlyar VV, Nalimov AG, Kotlyar MV, O’Faolain L. Subwavelength gratings for  polarization conversion and focusing of laser light. Photonic Nanostruct 2017;  27: 32-41.
     
  - P.  Lochab, P. Senthilkumaran, K. Khare. Designer vector beams maintaining a robust  intensity profile on propagation through turbulence. Phys. Rev., 2018; A98:  023831.
     
  - Berry  MV. Geometry of phase and polarization singularities illustrated by edge  diffraction and the tides. Proc SPIE 2001; 4403:  DOI:10.1117/12.428252.
     
  - Freund  I. Polarization singularity indices in Gaussian laser beams. Opt Commun 2002;  201: 251-270.
     
  - Kovalev AA, Kotlyar VV. Gaussian beams  with multiple polarization singularities. Opt Commun 2018; 423: 111-120. DOI:  10.1016/j.optcom.2018.04.023. 
     
  - Berry  MV. Optical vortices evolving from  helicoidal integer and fractional phase steps. J Opt A-Pure Appl Opt  2004; 6(2): 259-268. DOI: 10.1088/1464-4258/6/2/018.
     
  - Born  M, Wolf E. Principles of optics: Electromagnetic theory of propagation,  interference and diffraction of light. 7th ed. Cambridge:  Cambridge University Press; 1999.
     
  - Zhan  Q. Cylindrical vector beams: from mathematical concepts to applications. Adv  Opt Photon 2009; 1: 1-57.
     
  - Kolyar  VV, Stafeev SS, Kovalev AA. Sharp focusing of a light field with polarization  and phase singularities of an arbitrary order. Computer Optics 2019; 43(3):  337-346. DOI: 10.18287/2412-6179-2019-43-3-337-346.
     
  - Richards  B, Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the  image field in an aplanatic system. Proc Math Phys Eng Sci 1959; 253(1274):  358-379. 
 
  - Kotlyar VV, Kovalev AA, Volyar AV. Topological  charge of a linear combination of optical vortices: topological competition.  Opt Express 2020; 28(6): 8266-8281. DOI: 10.1364/OE.386401. 
   
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20