(47-5) 06 * << * >> * Russian * English * Content * All Issues

Computer simulation of diffractive imaging lenses using hyperspectral images
S.I. Kharitonov 1,2, V.A. Fursov 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151;
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1194 kB

DOI: 10.18287/2412-6179-CO-1274

Pages: 725-733.

Full text of article: Russian language.

Abstract:
We offer a computer technology for modeling a process of optical imaging with a diffractive imaging lens. The central idea of the technology is to evaluate the quality of the optical system by matching the input and output images against criteria adopted in image processing. For this purpose, same-resolution hyperspectral images are fed to the input and generated at the output. Thanks to the large number of spectral components, a fairly accurate reproduction of the effects associated with the dependence of the refractive index on the wavelength is ensured. To compare input and output images in terms of PSNR (peak signal-to-noise ratio), standard three-component RGB images are "assembled" using standard matching functions over the entire optical range. Results of the study of the dependence of the PSNR indicator on the main parameters of the optical system are given: focal length, linear aperture and the number of diffraction orders taken into account.

Keywords:
diffraction imaging lens, image modeling, geometric optics, harmonic lens.

Citation:
Kharitonov SI, Fursov VA. Computer simulation of diffractive imaging lenses using hyperspectral images. Computer Optics 2023; 47(5): 725-733. DOI: 10.18287/2412-6179-CO-1274 .

Acknowledgements:
This work was supported by the Ministry of Science and Higher Education within the government project No. 007-ГЗ/3363/26 of the FSRC “Crystallography and Photonics” RAS (Numerical modeling) and the government project FSSS-2021-0016 of Samara University (Multi-spectral imaging).

References:

  1. Davis A, Kuhnlenz DF. Optical design using Fresnel lenses. Basic principles and some practical examples. Optik und Photonik2007; 2(4): 52-55.
  2. Thieme J. Theoretical investigations of imaging properties of zone plates using diffraction theory. In Book: Sayre D, Kirz J, Howells M, Rarback H, eds. X-Ray Microscopy II.Berlin, Heidelberg: Springer-Verlag;1988: 70-79.
  3. Takeuchi A, Uesugi K, Suzuki Y, Tamura S, Kamijo N. High-resolution X-ray imaging microtomography with Fresnel zone plate optics at SPring-8. Proc 8th Int Conf X-ray Microscopy IPAP Conf Series 2005; 7: 360-362.
  4. Heide F, Rouf M, Hullin MB, Labitzke B, Heidrich W, Kolb A. High-quality computational imaging through simple lenses. ACM Trans Graph 2013; 32(5): 149.
  5. Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica2017; 4(1): 139-152.
  6. Soifer VA, ed. Computer design of diffractive optics.Woodhead Publishing Ltd; 2012. ISBN: 978-1-84569-635-1.
  7. Kazanskii NL, Khonina SN, Skidanov RV, Morozov A, Kharitonov SI, Volotovskiy SG. Formation of images using multilevel diffractive lens. Computer Optics 2014; 38(3): 425-434. DOI: 10.18287/0134-2452-2014-38-3-425-434.
  8. Skidanov RV, Doskolovich LL, Ganchevskaya SV, Blank VA, Podlipnov VV, Kazanskiy NL. Experiment with a diffractive lens with a fixed focus position at several given wavelengths. Computer Optics 2020; 44(1): 22-28. DOI: 10.18287/2412-6179-CO-646.
  9. Evdokimova VV, Petrov MV, Klyueva MA, Zybin EY, Kosianchuk VV, Mishchenko IB, Novikov VM, Selvesiuk NI, Ershov EI, Ivliev NA, Skidanov RV, Kazanskiy NL, Nikonorov AV. Deep learning-based video stream reconstruction in mass-production diffractive optical systems. Computer Optics2021; 45(1): 130-141. DOI: 10.18287/2412-6179-CO-834.
  10. Kharitonov S, Fursov V. Computer simulation of image formation by diffraction lens. Optical Memory and Neural Networks 2022; 31(1): S31-S37. DOI: 10.3103/S1060992X2205006X.
  11. Bobrov ST, Greisukh GI, Tyrkevich YuG. Optics of diffractive elements and systems [In Russian]. Leningrad: “Mashinostroenie” Publisher; 1986.
  12. Greisukh GI, Bobrov ST, Stepanov SA. Optics of diffractive and gradient-index elements and systems. Bellingham: SPIE Press; 1997. ISBN: 978-0-8194-2451-8.
  13. Golub MA, Doskolovich LL, Kazanskiy NL, Kharitonov SI, Soifer VA. Computer generated diffractive multi-focal lens. J Mod Opt1992; 39(6): 1245-1251. DOI: 10.1080/713823549.
  14. Kazanskiy NL. Modeling diffractive optics elements and devices. Proc SPIE 2018; 10774: 107740O. DOI: 10.1117/12.2319264.
  15. Kazanskiy N, Ivliev N, Podlipnov V, Skidanov R. An airborne Offner imaging hyperspectrometer with radially-fastened primary elements. Sensors 2020; 20(12): 3411. DOI: 10.3390/s20123411.
  16. Rastorguev AA, Kharitonov SI, Kazanskiy NL. Modeling of image formation with a space-borne Offner hyperspectrometer. Computer Optics2020; 44(1): 12-21. DOI: 10.18287/2412-6179-CO-644.
  17. Rastorguev AA, Kharitonov SI, Kazanskiy NL. Numerical simulation of the performance of a spaceborne Offner imaging hyperspectrometer in the wave optics approximation. Computer Optics 2022; 46(1): 56-64. DOI: 10.18287/2412-6179-CO-1034.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20