(47-6) 04 * << * >> * Russian * English * Content * All Issues

Spin angular momentum at the sharp focus of a cylindrical vector vortex beam
V.V. Kotlyar 1,2, S.S. Stafeev 1,2, A.M. Telegin 1,2

IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS,
443001, Samara, Russia, Molodogvardeyskaya 151;
Samara National Research University,
443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 439 kB

DOI: 10.18287/2412-6179-CO-1347

Pages: 875-883.

Full text of article: Russian language.

Abstract:
Sharp focusing of a light field with double (phase and polarization) singularity is studied. Using the Richards-Wolf method, an exact analytical expression for the longitudinal projection of the spin angular momentum (SAM) vector at the focus is obtained. The expression derived suggests that 4 (–1) subwavelength regions are formed at the focus, where n is the cylindrical vector beam order, with their centers located on a certain circle centered on the optical axis. Notably, the SAM projections are found to have the opposite sign in the neighboring regions. This means that in the neighboring focal regions, the light has alternating left or right elliptical polarization (manifestation of a spin Hall effect). At the center of the focal spot near the optical axis, the field is right-handed elliptically polarized at > 0, or left-handed elliptically polarized at < 0, where m is the vortex charge. The total longitudinal spin, i.e., the longitudinal SAM component averaged over the beam-cross section, is zero and preserved upon focusing. Due to the beam containing an optical vortex with charge m, the transverse energy flow rotates on a spiral path near the focal plane, rotating on a circle in the focal plane. The rotation direction near the optical axis is counterclockwise for > 0, and clockwise for < 0.

Keywords:
spin angular momentum, tight focusing, cylindrical vector beam, optical vortex.

Citation:
Kotlyar VV, Stafeev SS, Telegin AM. Spin angular momentum at the sharp focus of a cylindrical vector vortex beam. Computer Optics 2023; 47(6): 875-883. DOI: 10.18287/2412-6179-CO-1347.

Acknowledgements:
This work was partly funded by the Russian Science Foundation under grant No. 23-12-00236 (Section “Theoretical background”) and the RF Ministry of Science and Higher Education within the government project of the FSRC “Crystallography and Photonics” RAS (Section “Numerical Simulation”).

References:

  1. Poynting JH. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proc R Soc London 1909; 82(557): 560-567.
  2. Cameron RP, Barnett SM, Yao AM. Optical helicity, optical spin and related quantities in electromagnetic theory. New J Phys 2012; 14(5): 053050.
  3. Milione G, Sztul HI, Nolan DA, Alfano RR. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys Rev Lett 2011; 107(5): 053601.
  4. He L, Li H, Li M. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices. Sci Adv 2016; 2(9): e1600485.
  5. Abujetas DR, Sánchez-Gil JA. Spin angular momentum of guided light induced by transverse confinement and intrinsic helicity. ACS Photonics 2020; 7(2): 534-545.
  6. Neugebauer M, Bauer T, Aiello A, Banzer P. Measuring the transverse spin density of light. Phys Rev Lett 2015; 114(6): 063901.
  7. Bokor N, Iketaki Y, Watanabe T, Fujii M. Investigation of polarization effects for high-numerical-aperture first-order Laguerre-Gaussian beams by 2D scanning with a single fluorescent microbead. Opt Express 2005; 13(26): 10440-10447.
  8. Bliokh KY, Ostrovskaya EA, Alonso MA, Rodríguez-Herrera OG, Lara D, Dainty C. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems. Opt Express 2011; 19(27): 26132-26149.
  9. Bliokh KY, Rodríguez-Fortuño FJ, Nori F, Zayats A V. Spin–orbit interactions of light. Nat Photonics 2015; 9(12): 796-808.
  10. Aiello A, Banzer P, Neugebauer M, Leuchs G. From transverse angular momentum to photonic wheels. Nat Photonics 2015; 9(12): 789-795.
  11. Bauer T, Neugebauer M, Leuchs G, Banzer P. Optical polarization Möbius strips and points of purely transverse spin density. Phys Rev Lett 2016; 117(1): 013601.
  12. Zhu W, Shvedov V, She W, Krolikowski W. Transverse spin angular momentum of tightly focused full Poincaré beams. Opt Express 2015; 23(26): 34029.
  13. Bliokh KY, Bekshaev AY, Nori F. Dual electromagnetism: helicity, spin, momentum and angular momentum. New J Phys 2013; 15(3): 033026.
  14. Chen R, Chew K, Dai C, Zhou G. Optical spin-to-orbital angular momentum conversion in the near field of a highly nonparaxial optical field with hybrid states of polarization. Phys Rev A 2017; 96(5): 053862.
  15. Hu K, Chen Z, Pu J. Tight focusing properties of hybridly polarized vector beams. J Opt Soc Am A 2012; 29(6): 1099-1104.
  16. Meng P, Man Z, Konijnenberg AP, Urbach HP. Angular momentum properties of hybrid cylindrical vector vortex beams in tightly focused optical systems. Opt Express 2019; 27(24): 35336-35348.
  17. Li M, Yan S, Yao B, Liang Y, Zhang P. Spinning and orbiting motion of particles in vortex beams with circular or radial polarizations. Opt Express 2016; 24(18): 20604.
  18. Li M, Yan S, Liang Y, Zhang P, Yao B. Spinning of particles in optical double-vortex beams. J Opt 2018; 20(2): 025401.
  19. Kotlyar VV, Stafeev SS, Kovalev AA. Reverse and toroidal flux of light fields with both phase and polarization higher-order singularities in the sharp focus area. Opt Express 2019; 27(12): 16689-16702. DOI: 10.1364/OE.27.016689.
  20. Volyar AV, Shvedov VG, Fadeeva TA. The structure of a nonparaxial Gaussian beam near the focus: II. Optical vortices. Opt Spectrosc 2001; 90(1): 93-100.
  21. Bekshaev AY. A simple analytical model of the angular momentum transformation in strongly focused light beams. Cent Eur J Phys 2010; 8(6): 947-960.
  22. Richards B, Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc R Soc A Math Phys Eng Sci 1959; 253(1274): 358-379.
  23. Barnett SM, Allen L. Orbital angular momentum and nonparaxial light beams. Opt Commun 1994; 110(5-6): 670-678.
  24. Kotlyar VV, Kovalev AA, Kozlova ES, Telegin AM. Hall effect at the focus of an optical vortex with linear polarization. Micromachines 2023; 14(4): 788. DOI: 10.3390/mi14040788.
  25. Han L, Liu S, Li P, Zhang Y, Cheng H, Zhao J. Catalystlike effect of orbital angular momentum on the conversion of transverse to three-dimensional spin states within tightly focused radially polarized beams. Phys Rev A 2018; 97(5): 053802.
  26. Kovalev AA, Kotlyar VV. Spin Hall effect of double-index cylindrical vector beams in a tight focus. Micromachines 2023; 14(2): 494.
  27. Kotlyar VV, Kovalev AA, Nalimov AG. Energy density and energy flux in the focus of an optical vortex: Reverse flux of light energy. Opt Lett 2018; 43(12): 2921-2924. DOI: 10.1364/OL.43.002921.
  28. Humblet J. Sur le moment d’impulsion d’une onde électromagnétique. Physica 1943; 10(7): 585-603.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20