(47-6) 10 * << * >> * Russian * English * Content * All Issues

Simulation of the spatial distribution of scattered light under illumination of a resonant diffraction grating with structured light
S.N. Khonina 1,2, Yu.V. Kapitonov 2

IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS,
443001, Samara, Russia, Molodogvardeyskaya 151;
Saint Petersburg State University,
198504, Russia, Saint-Petersburg, Ulyanovskaya st. 1

 PDF, 1907 kB

DOI: 10.18287/2412-6179-CO-1404

Pages: 927-937.

Full text of article: Russian language.

Abstract:
In this paper, a comparative theoretical analysis and numerical simulation of the operation of various types of diffraction gratings in the far field is carried out using a Fourier transform. In more detail is discussed the spatial spectrum of binary amplitude gratings, including the diffraction patterns in the far field and in the focal plane and while taking into account variations in the fill-factor. When analyzing characteristics of experimentally created halide perovskite resonant gratings, the influence of the illuminating beam type on the formation of the first three diffraction orders is considered.

Keywords:
resonant diffraction grating, spatial spectrum, structured light.

Citation:
Khonina SN, Kapitonov YV. Simulation of the spatial distribution of scattered light under illumination of a resonant diffraction grating with structured light. Computer Optics 2023; 47(6): 927-937. DOI: 10.18287/2412-6179-CO-1404.

Acknowledgements:
The work was partly funded by the Ministry of Science and Higher Education of the Russian Federation (Megagrant No. 075-15-2022-1112) and within the government project of the Federal Research Center "Crystallography and Photonics" RAS (Section of comparative theoretical analysis).

References:

  1. Hutley MC. Diffraction gratings. New York: Academic Press; 1982. ISBN: 978-0-12-362980-7.
  2. Born M, Wolf E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. Cambridge: Cambridge University Press; 1999.
  3. Palmer C, Loewen E. Diffraction grating handbook. Rochester, NY: Newport Corp; 2002.
  4. Dammann GH, Görtler K. High efficiency in-line multiple imaging by means of multiple phase holograms. Opt Commun 1971; 3(5): 312-315. DOI: 10.1016/0030-4018(71)90095-2.
  5. Lee WH. High efficiency multiple beam gratings. Appl Opt 1979; 18(13): 2152-2158. DOI: 10.1364/AO.18.002152.
  6. Mait JN. Design of binary-phase and multiphase Fourier gratings for array generation. J Opt Soc Am A 1990; 7(8): 1514-1528. DOI: 10.1364/JOSAA.7.001514.
  7. O’Shea DC. Reduction of the zero-order intensity in binary Dammann gratings. Appl Opt 1995; 34(28): 6533-6537. DOI: 10.1364/AO.34.006533.
  8. Miller JM, Taghizadeh MR, Turunen J, Ross N. Multilevel-grating array generators: Fabrication error analysis and experiments. Appl Opt 1993; 32(14): 2519-2525. DOI: 10.1364/AO.32.002519.
  9. Lizotte T, Rosenberg R, Obar O. Actual performance vs. modeled performance of diffractive beam splitters. Proc SPIE 2005; 5876: 505-515. DOI: 10.1117/12.618549.
  10. Wolfe WL. Introduction to grating spectrometers. Bellingham, Washington: SPIE Press; 1997.
  11. Karpeev SV, Khonina SN, Kharitonov SI. Study of the diffraction grating on a convex surface as a dispersive element. Computer Optics 2015; 39(2): 211-217. DOI: 10.18287/0134-2452-2015-39-2-211-217.
  12. Pavlycheva NK. Diffraction gratings for spectral devices [Review]. J Opt Technol 2022; 89(3): 142-150. DOI: 10.1364/JOT.89.000142.
  13. Berezny AE, Karpeev SV, Uspleniev GV. Computer-generated holographic optical elements produced by photolithography. Opt Lasers Eng 1991; 15(5): 331-340. DOI: 10.1016/0143-8166(91)90020-T.
  14. Levy U, Desiatov B, Goykhman I, Nachmias T, Ohayon A, Meltzer SE. Design, fabrication, and characterization of circular Dammann gratings based on grayscale lithography. Opt Lett 2010; 35(6): 880-882. DOI: 10.1364/OL.35.000880.
  15. Bhardwaj P, Erdmann A, Leitel R. Modeling of grayscale lithography and calibration with experimental data for blazed gratings. Proc SPIE 2021; 11875: 118750K. DOI: 10.1117/12.2597203.
  16. Rebollar E, Castillejo M, Ezquerra TA. Laser induced periodic surface structures on polymer films: From fundamentals to applications. Eur Polym J 2015; 73: 162-174. DOI: 10.1016/j.eurpolymj.2015.10.012.
  17. Pawlik G, Wysoczanski T, Mitus AC. Complex dynamics of photoinduced mass transport and surface relief gratings formation. Nanomaterials 2019; 9(3): 352. DOI: 10.3390/nano9030352.
  18. Jelken J, Henkel C, Santer S. Formation of half-period surface relief gratings in azobenzene containing polymer films. Appl Phys B 2020; 126: 149. DOI: 10.1007/s00340-020-07500-w.
  19. Porfirev A, Khonina S, Meshalkin A, Ivliev N, Achimova E, Abashkin V, Prisacar A, Podlipnov V. Two-step maskless fabrication of compound fork-shaped gratings in nanomultilayer structures based on chalcogenide glasses. Opt Lett 2021; 46(13): 3037-3040. DOI: 10.1364/OL.427335.
  20. Reda F, Salvatore M, Borbone F, Maddalena P, Oscurato SL. Accurate morphology-related diffraction behavior of light-induced surface relief gratings on azopolymers. ACS Materials Lett 2022; 4(5): 953-959. DOI: 10.1021/acsmaterialslett.2c00171.
  21. Kapitonov YuV, Kozhaev MA, Dolgikh YuK, Eliseev SA, Efimov YuP, Ulyanov PG, Petrov VV, Ovsyankin VV. Spectrally selective diffractive optical elements based on 2D-exciton resonance in InGaAs/GaAs single quantum wells. Phys Status Solidi B 2013; 250(10): 2180-2184. DOI: 10.1002/pssb.201349112.
  22. Kapitonov YuV, Shapochkin PYu, Beliaev LYu, Petrov YuV, Efimov YuP, Eliseev SA, Lovtcius VA, Petrov VV, Ovsyankin VV. Ion-beam-assisted spatial modulation of inhomogeneous broadening of a quantum well resonance: excitonic diffraction grating. Opt Lett 2016; 41(1): 104-106. DOI: 10.1364/OL.41.000104.
  23. Shapochkin PYu, Petrov YuV, Eliseev SA, Lovcjus VA, Efimov YuP, Kapitonov YuV. Modelling and optimization of the excitonic diffraction grating. J Opt Soc Am A 2019; 36(9): 1505-1511. DOI: 10.1364/JOSAA.36.001505.
  24. Kapitonov YuV, Shapochkin PYu, Petrov YuV, Lovtcius VA, Eliseev SA, Efimov YuP. Diffraction from excitonic diffraction grating. J Phys Conf Ser 2019; 1368: 022013. DOI: 10.1088/1742-6596/1368/2/022013.
  25. Mamaeva MP, Lozhkin MS, Shurukhina AV, Stroganov BV, Emeline AV, Kapitonov YuV. Halide perovskite excitonic diffraction grating. Adv Opt Mater 2023; 11(5): 2202152. DOI: 10.1002/adom.202202152.
  26. Kapitonov YuV, Shapochkin PYu, Petrov YuV, Efimov YuP, Eliseev SA, Dolgikh YuK, Petrov VV, Ovsyankin VV. Effect of irradiation by He+ and Ga+ ions on the 2D-exciton susceptibility of InGaAs/GaAs quantum-well structures. Phys Status Solidi B 2015; 252(9): 1950-1954. DOI: 10.1002/pssb.201451611.
  27. Yudin VI, Lozhkin M, Shurukhina AV, Emeline AV, Kapitonov YuV. Photoluminescence manipulation by the ion beam irradiation in CsPbBr3 halide perovskite single crystals. J Phys Chem C 2019; 123: 21130-21134. DOI: 10.1021/acs.jpcc.9b04267.
  28. Selivanov NI, Murzin AO, Yudin VI, Kapitonov YuV, Emeline AV. Counterdiffusion-in-gel growth of high optical and crystal quality MAPbX3 (MA = CH3NH3+, X = I−, Br−) lead-halide perovskite single crystals. CrystEngComm 2022; 24: 2976-2981. DOI: 10.1039/d2ce00096b.
  29. Samsonova AYu, Yudin VI, Shurukhina AV, Kapitonov YuV. Excitonic enhancement and excited excitonic states in CsPbBr3 halide perovskite single crystals. Materials 2023; 16(1): 185. DOI: 10.3390/ma16010185.
  30. Lozhkina OA, Yudin VI, Murashkina AA, Shilovskikh VV, Davydov VG, Kevorkyants R, Emeline AV, Kapitonov YuV, Bahnemann DW. Low inhomogeneous broadening of excitonic resonance in MAPbBr3 single crystals. J Phys Chem Lett 2018; 9(2): 302-305. DOI: 10.1021/acs.jpclett.7b02979.
  31. Nazarov RS, Solovev IA, Murzin AO, Selivanov NI, Even J, Emeline AV, Kapitonov YuV. Photon echo from free excitons in a CH3NH3PbI3 halide perovskite single crystal. Phys Rev B 2022; 105(24): 245202. DOI: 10.1103/PhysRevB.105.245202.
  32. Goodman JW. Introduction to Fourier optics. 2nd ed. New York: McGraw–Hill; 1996.
  33. Trichili A, Park K-H, Zghal M, Ooi BS, Alouini M-S. Communicating using spatial mode multiplexing: potentials, challenges, and perspectives. IEEE Commun Surv Tutor 2019; 21(4): 3175-3203. DOI: 10.1109/COMST.2019.2915981.
  34. Kazanskiy NL, Khonina SN, Karpeev SV, Porfirev AP. Diffractive optical elements for multiplexing structured laser beams. Quantum Electron 2020; 50(7): 629-635. DOI: 10.1070/QEL17276.
  35. Porfirev AP, Khonina SN. Experimental investigation of multi-order diffractive optical elements matched with two types of Zernike functions. Proc SPIE 2016; 9807: 98070E. DOI: 10.1117/12.2231378.
  36. Fu S, Zhang S, Wang T, Gao C. Measurement of orbital angular momentum spectra of multiplexing optical vortices. Opt Express 2016; 24(6): 6240-6248. DOI: 10.1364/OE.24.006240.
  37. Harrison C, Stafford CM, Zhang W, Karim A. Sinusoidal phase grating created by a tunably buckled surface. Appl Phys Lett 2004; 85(18): 4016-4018. DOI: 10.1063/1.1809281.
  38. Harvey JE, Pfisterer RN. Understanding diffraction grating behavior: including conical diffraction and Rayleigh anomalies from transmission gratings. Opt Eng 2019; 58(8): 087105. DOI: 10.1117/1.OE.58.8.087105.
  39. Ustinov AV, Porfir’ev AP, Khonina SN. Effect of the fill factor of an annular diffraction grating on the energy distribution in the focal plane. J Opt Technol 2017; 84(9): 580-587. DOI: 10.1364/JOT.84.000580.
  40. Torcal-Milla FJ, Sanchez-Brea LM. Diffraction by gratings with random fill factor. Appl Opt 2017; 56(18): 5253-5257. DOI: 10.1364/AO.56.005253.
  41. Khonina SN, Ustinov AV. Binary multi-order diffraction optical elements with variable fill factor for the formation and detection of optical vortices of arbitrary order. Appl Opt 2019; 58(30): 8227-8236. DOI: 10.1364/AO.58.008227.
  42. Meshalkin AYu, Podlipnov VV, Ustinov AV, Achimova EA. Analysis of diffraction efficiency of phase gratings in dependence of duty cycle and depth. J Phys Conf Ser 2019; 1368: 022047. DOI: 10.1088/1742-6596/1368/2/022047.
  43. Litchinitser NM. Structured light meets structured matter. Science 2012; 337(6098): 1054-1055. DOI: 10.1126/science.1226204.
  44. Rosales-Guzmán C, Ndagano B, Forbes A. A review of complex vector light fields and their applications. J Opt 2018; 20(12): 123001. DOI: 10.1088/2040-8986/aaeb7d.
  45. Angelsky OV, Bekshaev AY, Hanson SG, Zenkova CY, Mokhun II, Jun Z. Structured light: Ideas and concepts. Front Phys 2020; 8: 114. DOI: 10.3389/fphy.2020.00114.
  46. Forbes A, de Oliveira M, Dennis MR. Structured light. Nat Photonics 2021; 15: 253-262. DOI: 10.1038/s41566-021-00780-4.
  47. Andrews DL. Structured light and its applications: An introduction to phase structured beams and nanoscale optical forces. Academic Press; 2011.
  48. Kogelnik H, Li T. Laser beams and resonators. Appl Opt 1966; 5(10): 1550-1567. DOI: 10.1364/AO.5.001550.
  49. Siegman AE. Laser beams and resonators: Beyond the 1960s. IEEE J Sel Top Quantum Electron 2000; 6(6): 1389-1399. DOI: 10.1109/2944.902193.
  50. Chen YF, Lee CC, Wang CH, Hsieh MX. Laser transverse modes of spherical resonators: a review [Invited]. Chinese Opt Lett 2020; 18(9): 091404.
  51. Khonina SN, Kazanskiy NL, Karpeev SV, Butt MA. Bessel beam: Significance and applications–A progressive review. Micromachines 2020; 11(11): 997. DOI: 10.3390/mi11110997.
  52. Padgett MJ. Orbital angular momentum 25 years on [Invited]. Opt Express 2017; 25(10): 11265-11274. DOI: 10.1364/OE.25.011265.
  53. Wang XW, Nie ZQ, Liang Y, Wang J, Li T, Jia BH. Recent advances on optical vortex generation. Nanophotonics 2018; 7(9): 1533-1556. DOI: 10.1515/nanoph-2018-0072.
  54. Shen Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M, Yuan X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci Appl 2019; 8: 90. DOI: 10.1038/s41377-019-0194-2.
  55. Chen J, Wan C, Zhan Q. Engineering photonic angular momentum with structured light: a review. Adv Photon 2021; 3(6): 064001. DOI: 10.1117/1.AP.3.6.064001.
  56. Porfirev AP, Kuchmizhak AA, Gurbatov SO, Juodkazis S, Khonina SN, Kul’chin YuN. Phase singularities and optical vortices in photonics. Physics–Uspekhi 2022; 65(8): 789-811. DOI: 10.3367/UFNe.2021.07.039028.
  57. Porfirev A, Khonina S, Kuchmizhak A. Light–matter interaction empowered by orbital angular momentum: Control of matter at the micro- and nanoscale. Prog Quantum Electron 2023; 88: 100459. DOI: 10.1016/j.pquantelec.2023.100459.
  58. Bandres MA, Gutierrez-Vega JC, Chavez-Cerda S. Parabolic nondiffracting optical wave fields. Opt Lett 2004; 29(1): 44-46. DOI: 10.1364/OL.29.000044.
  59. Belafhal A, Ez-Zariy L, Hennani S, Nebdi H. Theoretical introduction and generation method of a novel nondiffracting waves: Olver beams. Opt Photon J 2015; 5(7): 234-246. DOI: 10.4236/opj.2015.57023.
  60. Siviloglou GA, Christodoulides DN. Accelerating finite energy Airy beams. Opt Lett 2007; 32(8): 979-981. DOI: 10.1364/OL.32.000979.
  61. Khonina SN. Specular and vortical Airy beams. Opt Commun 2011; 284(19): 4263-4271. DOI: 10.1016/j.optcom.2011.05.068.
  62. Zang F, Wang Y, Li L. Dual self-accelerating properties of one-dimensional finite energy Pearcey beam. Results Phys 2019; 15: 102656. DOI: 10.1016/j.rinp.2019.102656.
  63. Efremidis NK, Christodoulides DN. Abruptly autofocusing waves. Opt Lett 2010; 35(23): 4045-4047. DOI: 10.1364/OL.35.004045.
  64. Davis JA, Cottrell DM, Sand D. Abruptly autofocusing vortex beams. Opt Express 2012; 20(12): 13302-13310. DOI: 10.1364/OE.20.013302.
  65. Chen B, Chen C, Peng X, Peng Y, Zhou M, Deng D. Propagation of sharply autofocused ring Airy Gaussian vortex beams. Opt Express 2015; 23(12): 19288-19298. DOI: 10.1364/OE.23.019288.
  66. Khonina SN, Porfirev AP, Ustinov AV. Sudden autofocusing of superlinear chirp beams. J Opt 2018; 20(2): 025605. DOI: 10.1088/2040-8986/aaa075.
  67. Chen X, Deng D, Zhuang J, Yang X, Liu H, Wang G. Nonparaxial propagation of abruptly autofocusing circular Pearcey Gaussian beams. Appl Opt 2018; 57(28): 8418-8423. DOI: 10.1364/AO.57.008418.
  68. Khonina SN. Mirror and circular symmetry of autofocusing beams. Symmetry 2021; 13(10): 1794. DOI: 10.3390/sym13101794.
  69. Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys Rev A 1992; 45(11): 8185-8189. DOI: 10.1103/PhysRevA.45.8185.
  70. Khonina SN, Kotlyar VV, Soifer VA, Honkanen M, Lautanen J, Turunen J. Generation of rotating Gauss–Laguerre modes with binary-phase diffractive optics. J Mod Opt 1999; 46(2): 227-238. DOI: 10.1080/09500349908231267.
  71. Khonina SN, Kotlyar VV, Soifer VA. Self-reproduction of multimode Hermite–Gaussian beams. Tech Phys Lett 1999; 25(6): 489-491. DOI: 10.1134/1.1262525.
  72. Enderlein J, Pampaloni F. Unified operator approach for deriving Hermite–Gaussian and Laguerre–Gaussian laser modes. J Opt Soc Am A 2004; 21(8): 1553-1558. DOI: 10.1364/JOSAA.21.001553.
  73. Barwick S. Accelerating regular polygon beams. Opt Lett 2010; 35(24): 4118-4120. DOI: 10.1364/OL.35.004118.
  74. Khonina SN, Ustinov AV, Porfirev AP. Aberration laser beams with autofocusing properties. Appl Opt 2018; 57(6): 1410-1416. DOI: 10.1364/AO.57.001410.
  75. Fang Z-X, Zhao H-Z, Chen Y, Lu R-D, He L-Q, Wang P. Accelerating polygon beam with peculiar features. Sci Rep 2019; 9: 17817. DOI: 10.1038/s41598-019-54457-8.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20