(48-1) 05 * << * >> * Russian * English * Content * All Issues

Focusing a cylindrical vector beam and the Hall effect
V.V. Kotlyar 1,2, S.S. Stafeev 1,2, A.A. Kovalev 1,2, V.D. Zaitsev 1,2

IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS,
443001, Samara, Russia, Molodogvardeyskaya 151;
Samara National Research University,
443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1400 kB

DOI: 10.18287/2412-6179-CO-1356

Pages: 47-52.

Full text of article: Russian language.

Abstract:
Polarization of a higher-order cylindrical vector beam (CVB) is known to be locally linear. The higher the beam order, the larger number of full circles the local linear polarization vector makes around the optical axis. It is also known that the CVB with radially symmetric amplitude has zero spin angular momentum (SAM) and zero orbital angular momentum (OAM) both in the initial plane and in the focal plane (because in both Cartesian components of the vector field, the angular derivative of phase is zero). We show here that near the focal plane of the CVB (i.e. before and beyond the focus), an even number of local subwavelength areas with rotating polarization vectors are generated. In addition, in the neighboring areas, the polarization vectors are rotating in the opposite directions. Thus, the longitudinal components of the SAM vector in such neighboring areas are of different sign. After passing through the focal plane, the rotation direction of the polarization vector at each point of the beam cross-section changes to the opposite one. Such a spatial separation of the left and right rotation of the polarization vectors is a manifestation of the optical spin Hall effect.

Keywords:
spin Hall effect, cylindrical vector beam, tight focusing, spin angular momentum, orbital angular momentum.

Citation:
Kotlyar VV, Stafeev SS, Kovalev AA, Zaitsev VD. Focusing a cylindrical vector beam and the Hall effect. Computer Optics 2024; 48(1): 47-52. DOI: 10.18287/2412-6179-CO-1356.

Acknowledgements:
This work was partly funded by the Russian Science Foundation (Project No. 23-12-00236, theoretical background) and within the government project of the Federal Scientific Research Center "Crystallography and Photonics" of the Russian Academy of Sciences (numerical simulation).

References:

  1. Zhan Q, Leger JR. Focus shaping using cylindrical vector beams. Opt Express 2002; 10(7): 324-331. DOI: 10.1364/OE.10.000324.
  2. Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photon 2009; 1(1): 1-57. DOI: 10.1364/AOP.1.000001.
  3. Tidwell SC, Ford DH, Kimura WD. Generating radially polarized beams interferometrically. Appl Opt 1990; 29(15): 2234-2239. DOI: 10.1364/AO.29.002234.
  4. Moh KJ, Yuan XC, Bu J, Burge RE, Gao BZ. Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams. Appl Opt 2007; 46(30): 7544-7551. DOI: 10.1364/AO.46.007544.
  5. Youngworth KS, Brown TG. Focusing of high numerical aperture cylindrical-vector beams. Opt Express 2000; 7(2): 77-87. DOI: 10.1364/OE.7.000077.
  6. Davidson N, Bokor N. High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens. Opt Lett 2004; 29(12): 1318-1320. DOI: 10.1364/OL.29.001318.
  7. Rashid M, Maragò OM, Jones PH. Focusing of high order cylindrical vector beams. J Opt A: Pure Appl Opt 2009; 11(6): 065204. DOI: 10.1088/1464-4258/11/6/065204.
  8. Liu J, Chen X, He Y, Lu L, Ye H, Chai G, Chen S, Fan D. Generation of arbitrary cylindrical vector vortex beams with cross-polarized modulation. Results Phys 2020; 19: 103455. DOI: 10.1016/j.rinp.2020.103455.
  9. Stafeev SS, Nalimov AG, Zaitsev VD, Kotlyar VV. Tight focusing cylindrical vector beams with fractional order. J Opt Soc Am B 2021; 38(4): 1090-1096. DOI: 10.1364/JOSAB.413581.
  10. Kotlyar VV, Stafeev SS, Kovalev AA. Reverse and toroidal flux of light fields with both phase and polarization higher-order singularities in the sharp focus area. Opt Express 2019; 27(12): 16689-16702. DOI: 10.1364/OE.27.016689.
  11. Kotlyar VV, Kovalev AA, Stafeev SS, Nalimov AG, Rasouli S. Tightly focusing vector beams containing V-points polarization singularities. Opt Laser Technol 2022; 145: 107479. DOI: 10.1016/j.optlastec.2021.107479.
  12. Khonina SN, Golub I. Vectorial spin Hall effect of light upon tight focusing. Opt Lett 2022; 47(9): 2166-2169. DOI: 10.1364/OL.457507.
  13. Richards B, Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc R Soc Lond A 1959; 253: 358-379. DOI: 10.1098/rspa.1959.0200.
  14. Bliokh KY, Ostrovskaya EA, Alonso MA, Rodríguez-Herrera OG, Lara D, Dainty C. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems. Opt Express 2011; 19(27): 26132-26149. DOI: 10.1364/OE.19.026132.
  15. Born M, Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. 6th ed. Oxford, New York: Pergamon Press; 1980. ISBN: 0-08-026482-4.
  16. Stafeev SS, Nalimov AG, Kovalev AA, Zaitsev VD, Kotlyar VV. Circular polarization near the tight focus of linearly polarized light. Photonics 2022; 9(3): 196. DOI: 10.3390/photonics9030196.
  17. Humblet J. Sur le moment d’impulsion d’une onde électromagnétique. Physica 1943; 10(7): 585-603. DOI: 10.1016/S0031-8914(43)90626-3.
  18. Bliokh K, Bekshaev A, Nori F. Extraordinary momentum and spin in evanescent waves. Nat Commun 2014; 5: 3300. DOI: 10.1038/ncomms4300.
  19. Bliokh KY, Bekshaev AY, Nori F. Corrigendum: Dual electromagnetism: helicity, spin, momentum, and angular momentum (2013 New J. Phys. 15 033026). New J Phys 2016; 18(8): 089503. DOI: 10.1088/1367-2630/18/8/089503.
  20. Wen D, Yue F, Kumar S, Ma Y, Chen M, Ren X, Kremer PE, Gerardot BD, Taghizadeh MR, Buller GS, Chen X. Metasurface for characterization of the polarization state of light. Opt Express 2015; 23(8): 10272-10281. DOI: 10.1364/OE.23.010272.
  21. Wen D, Yue F, Li G, Zheng G, Chan K, Chen S, Chen M, Li KF, Wong PWH, Cheah KW, Pun EYB, Zhang S, Chen X. Helicity multiplexed broadband metasurface holograms. Nat Commun 2015; 6: 8241. DOI: 10.1038/ncomms9241.
  22. Khorasaninejad M, Chen WT, Zhu AY, Oh J, Devlin RC, Rousso D, Capasso F. Multispectral chiral imaging with a metalens. Nano Lett 2016; 16(7): 4595-4600. DOI: 10.1021/acs.nanolett.6b01897.
  23. Ma A, Intaravanne Y, Han J, Wang R, Chen X. Polarization detection using light’s orbital angular momentum. Adv Opt Mater 2020; 8(18): 2000484. DOI: 10.1002/adom.202000484.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20