(48-2) 16 * << * >> * Russian * English * Content * All Issues

Ways to improve the accuracy of the harmonic method for simulating two-dimensional signals
V.V. Syuzev 1, A.V. Proletarsky 1, D.A. Mikov 1, I.I. Deykin 1

Bauman Moscow State Technical University,
105005, Moscow, Russia, 2nd Baumanskaya street 5/1

 PDF, 1537 kB

DOI: 10.18287/2412-6179-CO-1381

Pages: 294-302.

Full text of article: Russian language.

Abstract:
The article studies properties of the harmonic simulation method within the framework of the spectral theory and evaluates the quality of this method. A review of the literature on the existing methods for modeling multidimensional random fields is carried out, making it possible to compare these methods using criteria such as the complexity of the algorithm, computational costs and memory requirements, requirements for the covariance function and the grid. Weaknesses are revealed, such as insufficient accuracy and high computational complexity, which are characteristic of spectral simulation methods in general, including the harmonic method. An analysis of forms of the signal simulated by the harmonic method for different bases reveals a property of centrosymmetry for square signals in the Fourier basis, a similar property for rectangular signals in the Fourier basis, the symmetry property of a square signal in the Hartley basis and the absence of such properties for a rectangular signal simulated in the Hartley basis. A comparative analysis of the accuracy of simulating two-dimensional signals, as a special case of multidimensional ones, is carried out by the harmonic method in the Fourier and Hartley bases. It is shown that, depending on the sampling characteristics, the simulated signal in the Fourier basis differs from the same signal simulated in the Hartley basis in terms of accuracy. As a result of the study, recommendations are worked out for choosing the basis in a specific problem of simulating two-dimensional signals. The effect of the discovered properties on the computational complexity of the method is described. Methods for applying these properties to simulate arbitrary two-dimensional signals are proposed.

Keywords:
harmonic signal simulation method, Fourier bases, Hartley bases, autocorrelation functions, centrosymmetric matrices.

Citation:
Syuzev VV, Proletarsky AV, Mikov DA, Deykin II. Ways to improve the accuracy of the harmonic method for simulating two-dimensional signals. Computer Optics 2024; 48(2): 294-302. DOI: 10.18287/2412-6179-CO-1381.

Acknowledgements:
This work was supported by the Russian Science Foundation, grant №22-11-00049, https://rscf.ru/project/22-11-00049/. This paper is a part of the research work carried out within the Project FSFN-2023-0006.

References:

  1. Syuzev VV, Smirnova EV, Proletarsky AV. Algorithms of multidimensional simulation of random processes. Computer Optics 2021; 45(4): 627-637. DOI: 10.18287/2412-6179-CO-770.
  2. Syuzev VV, Proletarsky AV, Mikov DA, Deykin II. Techniques of sampling the energy characteristics of two-dimensional random signals. Computer Optics 2022; 46(5): 828-839. DOI: 10.18287/2412-6179-CO-1074.
  3. Matheron G. The intrinsic random functions and their applications. Adv Appl Probab 1973; 5(3): 439-468.
  4. Hunger L, Cosenza B, Kimeswenger S, Fahringer T. Random fields generation on the GPU with the spectral turning bands method. In Book: Silva F, Dutra I, Costa VS, eds. Euro-Par 2014: Parallel processing. Cham, Heidelberg: Springer International Publishing Switzerland; 2014: 656-667. DOI: 10.1007/978-3-319-09873-9_55.
  5. Hunger L, Cosenza B, Kimeswenger S, Fahringer T. Spectral turning bands for efficient Gaussian random fields generation on GPUs and accelerators. Concurr Comput 2015; 27(16): 4122-4136. DOI: 10.14279/depositonce-7092.
  6. Emery X, Furrer R, Porcu E. A turning bands method for simulating isotropic Gaussian random fields on the sphere. Stat Probab Lett 2018; 144: 9-15. DOI: 10.1016/j.spl.2018.07.017.
  7. Ruan F, McLaughlin D. An efficient multivariate random field generator using the fast Fourier transform. Adv Water Resour 1998; 21(5): 385-399.
  8. Lang A, Potthoff J. Fast simulation of Gaussian random fields. Monte Carlo Methods Appl 2011; 17(3): 195-214.
  9. Rungbanaphan P, Honjo Y, Yoshida I. Spatial-temporal prediction of secondary compression using random field theory. Soils Found 2012; 52(1): 99-113. DOI: 10.1016/j.sandf.2012.01.013.
  10. Gurenko VV, Klimov SM, Proletarsky AV, Smirnova EV, Sotnikov AA, Syuzev VV. Signal simulation methods in scientific problems of real-time information and control systems modeling [In Russian]. Moscow: Ru-Science; 2021. ISBN: 978-5-4365-6609-2.
  11. Graham IG, Kuo FY, Nuyens D, Scheichl R, Sloan IH. Analysis of circulant embedding methods for sampling stationary random fields. SIAM J Numer Anal 2018; 56(3): 1871-1895.
  12. Park MH, Tretyakov M. A block circulant embedding method for simulation of stationary gaussian random fields on block-regular grids. Int J Uncertain Quantif 2015; 5(6): 527-544.
  13. Hackbusch W. Hierarchical matrices: algorithms and analysis. Berlin, Heidelberg: Springer-Verlag; 2015. ISBN: 978-3-662-47323-8.
  14. Feischl M, Kuo FY, Sloan IH. Fast random field generation with h-matrices. Numer Math 2018; 140(3): 639-676.
  15. Blanchard P, Coulaud O, Darve E. Fast hierarchical algorithms for generating gaussian random fields. Research Report 8811. Inria Bordeaux Sud-Ouest; 2015.
  16. Zheng Z, Dai H. Simulation of multi-dimensional random fields by Karhunen–Loève expansion. Comput Methods Appl Mech Eng 2017; 324: 221-247. DOI: 10.1016/j.cma.2017.05.022.
  17. Graham IG, Kuo FY, Nichols JA, Scheichl R, Schwab C, Sloan IH. Quasi-Monte Carlo finite element methods for elliptic pdes with lognormal random coefficients. Numer Math 2015; 131(2): 329-368. DOI: 10.1007/s00211-014-0689-y.
  18. Bachmayr M, Cohen A, Migliorati G. Representations of Gaussian random fields and approximation of elliptic pdes with lognormal coefficients. J Fourier Anal Appl 2018; 24(3): 621-649.
  19. Journel AG. Geostatistics for conditional simulation of ore bodies. Economic Geology 1974; 69(5): 673-687.
  20. Oliver DS. Moving averages for Gaussian simulation in two and three dimensions. Math Geol 1995; 27(8): 939-960.
  21. Le Ravalec M, Noetinger B, Hu LY. The fft moving average (fft-ma) generator: An efficient numerical method for generating and conditioning Gaussian simulations. Math Geol 2000; 32(6): 701-723.
  22. Schlather M, Malinowski A, Oesting M, Boecker D, Strokorb K, Engelke S, Martini J, Ballani F, Moreva O, Auel J, Menck P, Gross S, Ober U, Ribeiro P, Ripley BD, Singleton R, Pfaff B, R Core Team. RandomFields: Simulation and analysis of random fields. 2017. Package Version 3.1.50. Source: <https://rdrr.io/cran/RandomFields/>.
  23. Gräler B, Pebesma E, Heuvelink G. Spatio-temporal interpolation using gstat. The R Journal 2016; 8(1): 204-218. DOI: 10.32614/RJ-2016-014.
  24. Xue L, Dai C, Wang L. Development of a general package for resolution of uncertainty-related issues in reservoir engineering. Energies 2017; 10(2): 197. DOI: 10.3390/en10020197.
  25. Fenton GA, Vanmarcke EH. Simulation of random fields via local average subdivision. J Eng Mech 1990; 116(8): 1733-1749.
  26. Nuttall JD. Parallel implementation and application of the random finite element method. PhD thesis. The University of Manchester (United Kingdom); 2011.
  27. Van den Eijnden A, Hicks M. Conditional simulation for characterizing the spatial variability of sand state. COMGEO II – Proc 2nd Int Symp on Computational Geomechanics 2011: 288-296.
  28. Vanmarcke E. Random fields: analysis and synthesis. World Scientific; 2010.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20