(42-5) 04 * << * >> * Русский * English * Содержание * Все выпуски
  
Study on the Mainardi beam through the fractional  Fourier transforms system
    Habibi F., Moradi M., Ansari A.
  
  Department of  Physics, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
  Department of Physics, Photonic  Research Group, Shahrekord University, Shahrekord, Iran 
  Department  of Applied Mathematics, Faculty of Mathematical Sciences, Shahrekord  University, Iran
  
 PDF, 736 kB
  PDF, 736 kB
DOI: 10.18287/2412-6179-2018-42-5-751-757
Страницы: 751-757.
Аннотация:
  In this paper, we  introduced the Mainardi beam and indicated its attributes under the Fractional  Fourier transform for power variations of Fractional Fourier transform. The  results represent that the behavior of the Mainardi beam is similar to that of  the Airy beam. The obtained formula is  a very powerful tool to describe propagation of a Mainardi beam through the FFT  and the FrFT systems. An  analytical expression of the Mainardi beam passing through an Fractional  Fourier transform system presented. The influences of the Fractional Fourier  transform, rational order of the Mittag-Leffler function (Fourier transform of  the Mainardi function) on the normalized intensity distribution and  characteristics of the Mainardi beam in the Fractional Fourier transform system  examined. Power of the Fractional Fourier transform (p) and rational order of the  Mittag-Leffler function (q) control characteristics of the Mainardi beam such as  effective beam size, number, width, height, and orientation of the beam spot.
Ключевые слова:
  Wright function,  Mainardi function, Mittag-Leffler function, Airy beam, Fractional Fourier  transform.
Цитирование: 
Habibi F, Moradi M,  Ansari A. Study on the Mainardi beam through the fractional Fourier transforms  system. Computer Optics 2018;  42(5): 751-757. DOI: 10.18287/2412-6179-2018-42-5-751-757.
Литература:
  - Dai, H.T. Propagation dynamics of an Airy beam / H.T. Dai, Y.J. Liu, D. Luo,  X.W. Sun // Optics  Letters. – 2010. – Vol. 35, Issue 23. – P. 4075-4077. – DOI:  10.1364/OL.35.004075.
- Tang, B. Fractional Fourier transform for confluent hypergeometric beams / B. Tang,  Ch. Jiang, H. Zhu // Physics  Letters A. – 2012. – Vol. 376, Issues 38-39. – P. 2627-2631.  – DOI: 10.1016/j.physleta.2012.07.017.
- Mendlovic, D. Fractional Fourier transforms and their optical implementation: I / D. Mendlovic,  H.M. Ozaktas // Journal  of the Optical Society of America A. – 1993. – Vol. 10, Issue 9.  – P. 1875-1881. – DOI: 10.1364/JOSAA.10.001875.
- Ozaktas, H.M. Fractional Fourier transforms and their optical implementation. II / H.M. Ozaktas,  D. Mendlovic // Journal  of the Optical Society of America A. – 1993. – Vol. 10, Issue 12.  – P. 2522-2531. – DOI: 10.1364/JOSAA.10.002522.
- Lohmann, A.W. Image rotation, Wigner rotation, and the fractional Fourier transform / A.W. Lohmann  // Journal of the Optical  Society of America A. – 1993. – Vol. 10, Issue 10. – P. 2181-2186.  – DOI: 10.1364/JOSAA.10.002181.
- Cai, Y. Experimental observation of truncated fractional Fourier transform for a  partially coherent Gaussian Schell-model beam / Y. Cai, Q. Lin // Journal of the Optical Society of  America A. – 2008. – Vol. 25, Issue 8. – P. 2001-2010. – DOI:  10.1364/JOSAA.25.002001.
- Du, X. Fractional Fourier transform of truncated elliptical Gaussian beams / X. Du,  D. Zhao // Applied Optics. – 2006. – Vol. 45, Issue 36. – P. 9049-9052.  – DOI: 10.1364/AO.45.009049.
- Zhou, G. Fractional Fourier transform of a higher-order cosh-Gaussian beam / G. Zhou  // Journal of Modern Optics. –  2009. – Vol. 56, Issue 7. – P. 886-892. – DOI:  10.1080/09500340902783816.
- Gao, Y.-Q. Characteristics of beam aligmenet in a high power four-pass laser amplifier / Y.-Q. Gao,  B.-Q. Zhu, D.-Z. Liu, X.-F. Liu, Z.-Q. Lin // Applied Optics.  – 2009. – Vol. 48, Issue 8. – P. 1591-1597. – DOI:  10.1364/AO.48.001591.
- Erden, M.F. Propagation of mutual  intensity expressed in terms of the fractional Fourier transform / M.F. Erden,  H.M. Ozaktas, D. Mendlovic // Journal of the Optical Society of America A. – 1996. – Vol. 13,  Issue 5. – P. 1068-1071. – DOI: 10.1364/JOSAA.13.001068.
- Yoshimura, H. Properties of the  Gaussian schell model source field in a fractional Fourier plane / H. Yoshimura,  T. Iwai // Journal of the  Optical Society of America A. – 1997. – Vol. 14, Issue 12. – P. 3388-3393.  – DOI: 10.1364/JOSAA.14.003388.
- Lin, Q. Tensor ABCD law for  partially coherent twisted anisotropic Gaussian-schell model beams / Q. Lin,  Y. Cai // Optics Letters. – 2002. – Vol. 27, Issue 4. – P. 216-218.  – DOI: 10.1364/OL.27.000216.
- Cai, Y. Fractional Fourier  transform for partially coherent and partially polarized Gaussian-schell model  beams / Y. Cai, D. Ge, Q. Lin // Journal of Optics A: Pure and Applied Optics. –  2003. – Vol. 5, Issue 5. – P. 453-459. – DOI:  10.1088/1464-4258/5/5/304.
- Dragoman, D. Variant  fractional Fourier transformer for optical pulses / D. Dragoman, M. Dragoman, K.-H. Brenner  // Optics Letters. – 1999. – Vol. 24, Issue 14. – P. 933-935.  – DOI: 10.1364/OL.24.000933.
- Wang, F. Experimental observation  of fractional Fourier transform for a partially coherent optical beam with  Gaussian statistics / F. Wang, Y. Cai // Journal of the Optical Society of America A. –  2007. – Vol. 24, Issue 7. – P. 1937-1944. – DOI:  10.1364/JOSAA.24.001937.
- Zhou, G. Fractional Fourier  transform of Airy beams / G. Zhou, R. Chen, X. Chu // Applied Physics B. – 2012. – Vol. 109,  Issue 4. – P. 549-556. – DOI: 10.1007/s00340-012-5117-3.
- Khonina, S.N. Fractional Airy  beams / S.N. Khonina, A.V. Ustinov // Journal of the Optical Society of America A. –  2017. – Vol. 34, Issue 11. – P. 1991-1999. – DOI:  10.1364/JOSAA.34.001991.
- Belafhal, L. Theoretical  introduction and generation method of a novel nondiffracting waves: Olver beams  / L. Belafhal, L. Ez-Zariy, S. Hennani, H. Nebdi // Optics  and Photonics Journal. – 2015. – Vol. 5, Issue 7. – P. 234-246. –  DOI: 10.4236/opj.2015.57023.
- Mainardi, F. Fractional calculus  and waves in linear viscoelasticity / F. Mainardi. – London: Imperial  College Press, 2010. – 368 p. – ISBN: 978-1-84816-329-4.
- Morris, J.E. Propagation characteristics  of Airy beams: dependence upon spatial coherence and wavelength / J.E. Morris,  M. Mazilu, J. Baumgartl, T. Cizmár, K. Dholakia // Optics  Express. – 2009. – Vol. 17, Issue 15. – P. 13236-13245. – DOI:  10.1364/OE.17.013236.
- Gradshteyn, I.S. Tables of  integrals, series and products / I.S. Gradshteyn, I.M. Ryzhik. – New  York: Academic Press, 1980. – 1206 p. – ISBN: 978-0-12-294760-5.
- Mittag-Leffler, G. Sur la Nouvelle fonction Ea(x). Comptes Rendus de l'Académie  des Sciences – Series I / G. Mittag-Leffler // Mathematics. – 1903. – Vol. 137.  – P. 554-558.
- Wiman, A. Über den Fundamentalsatz in der Teorie der Funktionen Ea(x) / A. Wiman // Acta  Mathematica. – 1905. – Vol. 29, Issue 1. – P. 191-201.
    
  
  © 2009, IPSI RAS
    Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru  ; тел: +7  (846)  242-41-24 (ответственный
      секретарь), +7 (846)
      332-56-22 (технический  редактор), факс: +7 (846) 332-56-20