(42-5) 15 * << * >> * Русский * English * Содержание * Все выпуски

Tree-serial parametric dynamic programming with flexible prior model for image denoising
Thang P.C., Kopylov A.V.

National Research University Higher School of Economics, 20Myasnitskaya Street, Moscow, Russia
The University of Da Nang – University of Science and Technology, 54 Nguyen Luong BangStreet, Da Nang, Viet Nam
Tula State University, pr. Lenina 92, Tula, Russia

 PDF, 376kB

DOI: 10.18287/2412-6179-2018-42-5-838-845

Страницы: 838-845.

Аннотация:
We consider here image denoising procedures, based on computationally effective tree-serial parametric dynamic programming procedures, different representations of an image lattice by the set of acyclic graphs and non-convex regularization of a new type which allows to flexibly set a priori preferences. Experimental results in image denoising, as well as comparison with related methods, are provided. A new extended version of multi quadratic dynamic programming procedures for image denoising, proposed here, shows an improved accuracy for images of a different type.

Ключевые слова:
Image denoising, Dynamic programming, Bayesian optimization, Markov random fields (MRFs), Gauss-Seidel iteration method.

Цитирование:
Thang PC, Kopylov AV. Tree-serial parametric dynamic programming with flexible prior model for image denoising. Computer Optics 2018; 42(5): 838-845. DOI: 10.18287/2412-6179-2018-42-5-838-845.

Литература:

  1. Wang, Z. Modern image quality assessment. Synthesis lectures on image, video, and multimedia processing / Z. Wang, A.C. Bovik. – Morgan & Claypool Publishers, 2006. – 156 p. – ISBN: 978-1-59829-022-6.
  2. Chambolle, A. Total variation in imaging / A. Chambolle, V. Caselles, M. Novaga. – In: Handbook of mathematical methods in imaging / ed. by O. Scherzer. – New York: Springer Science+Business Media LLC, 2011. – P. 1016-1057. – DOI: 10.1007/978-0-387-92920-0_23.
  3. Chaudhury, K. Fast O(1) bilateral filtering using trigonometric range kernels / K. Chaudhury, D. Sage, M. Unser // IEEE Transactions on Image Processing. – 2011. – Vol. 20, Issue 12. – P. 3376-3382. – DOI: 10.1109/TIP.2011.2159234.
  4. Rudin, L.I. Nonlinear total variation based noise removal algorithms / L.I. Rudin, S. Osher, E. Fatemi // Physica D: Nonlinear Phenomena. – 1992. – Vol. 60, Issues 1-4. – P. 259-268. – DOI: 10.1016/0167-2789(92)90242-F.
  5. Wang, Y. MTV: modified total variation model for image noise removal / Y. Wang, W. Chen, S. Zhou, T. Yu, Y. Zhang // Electronics Letters. – 2011. – Vol. 47, Issue 10. – P. 592-594. – DOI: 10.1049/el.2010.3505.
  6. You, Y.-L. Fourth order partial differential equations for noise removal / Y.-L. You, M. Kaveh // IEEE Transactions on Image Processing. – 2000. – Vol. 9, Issue 10. – P. 1723-1730. – DOI: 10.1109/83.869184.
  7. Wang, Y.Q. Image denoising using modified Perona-Malik model based on directional Laplacian / Y.Q. Wang, J.C. Guo, W.F. Chen, W. Zhang // Signal Processing. – 2013. – Vol. 93, Issue 9. – P. 2548-2558. – DOI: 10.1016/j.sigpro.2013.02.020.
  8. Hammersley, J.M. Markov random fields on finite graphs and lattices / J.M. Hammersley, P.E. Clifford. – Berkeley preprint; 1971.
  9. Besag, J.E. Spatial interaction and the statistical analysis of lattice systems / J.E. Besag // Journal of the Royal Statistical Society, Series B. – 1974. – Vol. 36, Issue 2. – P. 192-236.
  10. Nikolova, M. Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction / M. Nikolova, K. Michael, C.-P. Tam // IEEE Transactions on Image Processing. – 2010. – Vol. 19, Issue 12. – P. 3073-3088. – DOI: 10.1109/TIP.2010.2052275.
  11. Pham, C.T. Parametric procedures for image denoising with flexible prior model / C.T. Pham, A. V.Kopylov // Proceedings of the Seventh Symposium on Information and Communication Technology (SoICT '16). – 2016. – P. 294-301. – DOI: 10.1145/3011077.3011099.
  12. Mottl, V.V. Optimization techniques on pixel neighborhood graphs for image processing / V.V. Mottl. – In: Graph-based representations in pattern recognition / ed. by J.-M. Jolion, W.G. Kropatsch. – Vienna: Springer-Verlag; 1998: 135-145. DOI: 10.1007/978-3-7091-6487-7_14.
  13. Pham, C.T. Image processing procedures based on multi-quadratic dynamic programming / C.T. Pham // Informatica. – 2017. – Vol. 41, Issue 2. – P. 255-256.
  14. Pham, C.T. Multi-quadratic dynamic programming procedure of edge-preserving denoising for medical images / C.T. Pham, A.V. Kopylov // ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. – 2015. – Vol. XL-5/W6. – P. 101-106. – DOI: 10.5194/isprsarchives-XL-5-W6-101-2015.
  15. Bertelè, U. On non-serial dynamic programming / UBertelè, F. Brioschi // Journal of Combinatorial Theory, Series A. – 1973. – Vol. 14, Issue 2. – P. 137-148. – DOI: 10.1016/0097-3165(73)90016-2.
  16. Mottl, V. Elastic transformation of the image pixel grid for similarity based face identification / V. Mottl, A.V. Kopylov, A. Kostin, A. Yermakov, J. Kittler // Proceedings of 16th International Conference on Pattern Recognition. – 2002. – Vol. 3. – P. 549-552. – DOI: 10.1109/ICPR.2002.1047998.
  17. Dvoenko, S.D. Clustering sets based on distances and proximities between its elements [In Russian] / S.D. Dvoenko // Sibirskii Zhurnal Industrial'noi Matematiki. – 2009. – Vol. 12, Issue 1. – P. 61-73.
  18. Pham, C.T. Edge-preserving denoising based on dynamic programming on the full set of adjacency graphs / C.T. Pham, A.V. Kopylov, S.D. Dvoenko // ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. – 2017. – Vol. XLII-2/W4. – P. 55-60. – DOI: 10.5194/isprs-archives-XLII-2-W4-55-2017.
  19. Zosso, D. A primal-dual projected gradient algorithm for efficient Beltrami regularization / D. Zosso, A. Bustin. – Technical report UCLA CAM Report 14-52 2014.
  20. Kopylov, A.V. Parametric dynamic programming procedures for edge preserving in signal and image smoothing / A.V. Kopylov // Pattern Recognition and Image Analysis. – 2005. – Vol. 15, Issue 1. – P. 227-230.
  21. Kopylov, A. Tree-serial dynamic programming for image processing / A. Kopylov // Proceedings of 19th International Conference on Pattern Recognition. – 2008. – P. 1-4. – DOI: 10.1109/ICPR.2008.4761407.
  22. Kopylov, A. A signal processing algorithm based on parametric dynamic programming / A. Kopylov, O. Krasotkina, A. Pryimak, V. Mottl. – In: Image and Signal Processing / ed. by A. Elmoataz, O. Lezoray, F. Nouboud, D. Mammass, J. Meunier. – Berlin, Heidelberg: Springer, 2010. – P. 280-286. – DOI: 10.1007/978-3-642-13681-8_33.
  23. Kalman, R.E. New results in linear filtering and prediction theory / R.E. Kalman, R.S. Bucy // Journal of Basic Engineering. – 1961. – Vol. 83, Issue 1. – P. 95-108. – DOI: 10.1115/1.3658902.
  24. Kopylov, A.V. Rowwise aggregation of variables in the dynamic programming algorithm for image processing / A.V. Kopylov // Pattern Recognition and Image Analysis. – 2008. – Vol. 18, Issue 2. – P. 309-313. – DOI: 10.1134/S105466180802017X.
  25. Dvoenko, S.D. Recognition of dependent objects based on acyclic Markov models / S.D. Dvoenko // Pattern Recognition and Image Analysis. – 2012. – Vol. 22, Issue 1. – P. 28-38. – DOI: 10.1134/S1054661812010130.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru ; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20