(46-4) 01 * << * >> * Русский * English * Содержание * Все выпуски

Орбитальный угловой момент структурно-устойчивых лазерных пучков
В.В. Котляр 1,2, А.А. Ковалёв 1,2

ИСОИ РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН,
443001, Россия, г. Самара, ул. Молодогвардейская, д. 151;
Самарский национальный исследовательский университет имени академика С.П. Королёва,
443086, Россия, г. Самара, Московское шоссе, д. 34

 PDF, 966 kB

DOI: 10.18287/2412-6179-CO-1108

Страницы: 517-521.

Аннотация:
Для структурно-устойчивых лазерных пучков, амплитуда которых представима в виде конечной суммы функций Эрмита–Гаусса с неопределенными весовыми коэффициентами, получено аналитическое выражение для нормированного орбитального углового момента таких пучков, также через конечные суммы весовых коэффициентов. Показано, что при определенном выборе весовых коэффициентов можно получить максимальный орбитальный угловой момент, который равен максимальному номеру многочлена Эрмита, входящего в сумму. При этом сумма описывает однокольцевой пучок Лагерра–Гаусса с топологическим зарядом, равным максимальному орбитальному угловому моменту и максимальному номеру многочлена Эрмита.

Ключевые слова:
оптический вихрь, орбитальный угловой момент, структурно-устойчивый пучок, пучок Эрмита–Гаусса, пучок Лагерра–Гаусса.

Благодарности
Работа выполнена при поддержке Российского научного фонда (грант 18-19-00595) в части «Орбитальный угловой момент», а также Министерства науки и высшего образования РФ в рамках выполнения работ по Государственному заданию ФНИЦ «Кристаллография и фотоника» РАН в части «Моделирование».

Цитирование:
Котляр, В.В. Орбитальный угловой момент структурно-устойчивых лазерных пучков / В.В. Котляр, А.А. Ковалёв // Компьютерная оптика. – 2022. – Т. 46, № 4. – С. 517-521. – DOI: 10.18287/2412-6179-CO-1108.

Citation:
Kotlyar VV, Kovalev AA. Orbital angular momentum of structurally stable laser beams. Computer Optics 2022; 46(4): 517-521. DOI: 10.18287/2412-6179-CO-1108.

References:

  1. Forbes A. Structured light from lasers. Las Phot Rev 2019; 13(11): 1900140. DOI: 10.1002/lpor.201900140.
  2. Wang J, Liang Y. Generation and detection of structured light: a review. Front Phys 2021; 9: 688284. DOI: 10.3389/fphy.2021.688284.
  3. Scholes S, Sroor H, Ait-Ameur K, Zhan Q, Forbes A. General design principle for structured light lasers. Opt Express 2020; 28(23): 35006. DOI: 10.1364/OE.410963.
  4. Pan J, Shen Y, Wan Z, Fu X, Zhang H, Liu Q. Index-tunable structured light beams from a laser with an intracavity astigmatic mode converter. Phys Rev Appl 2020; 14(4): 044048. DOI: 10.1103/PhysRevApplied.14.044048.
  5. Abramochkin EG, Volostnikov VG. Beam transformations and nontransformed beams. Opt Commun 1991; 83(1-2): 123-135. DOI: 10.1016/0030-4018(91)90534-K.
  6. Restuccia S, Giovannini D, Gibson G, Padgett MJ. Comparing the information capacity of Laguerre-Gaussian and Hermite-Gaussian modal set in a finite-aperture system. Opt Express 2016; 24(24): 27127-27136. DOI: 10.1364/OE.24.027127.
  7. Siviloglou GA, Broky J, Dogariu A, Christodoulides DN. Observation of accelerating Airy beams. Phys Rev Lett 2007; 99(21): 213901. DOI: 10.1103/PhysRevLett.99.213901.
  8. Zhan QW. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photon 2009; 1(1): 1-57. DOI: 10.1364/AOP.1.000001.
  9. Chong A, Wan C, Chen J, Zhan QW. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat Photon 2020; 14(6): 350-354. DOI: 10.1038/s41566-020-0587-z.
  10. Rego L, Dorney KM, Brooks NJ, Nguyen QL, Liao CT, Roman JS, Couch DE, Liu A, Pisanty E, Lewenstein M, Plaja L, Kapteyn HC, Murnane MM, Hernández-García C. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science 2019; 364(6447): eaaw9486. DOI: 10.1126/science.aaw9486.
  11. Indebetouw G. Optical vortices and their propagation. J Mod Opt 1993; 40(1): 73-87. DOI: 10.1080/09500349314550101.
  12. Abramochkin EG, Volostnikov VG. Spiral-type beams: optical and quantum aspects. Opt Commun 1996; 125(4-6): 302-323. DOI: 10.1016/0030-4018(95)00640-0.
  13. Kotlyar VV. Optical beams with an infinite number of vortices. Computer Optics 2021; 45(4): 490-496. DOI: 10.18287/2412-6179-CO-858.
  14. Volyar V, Abramochkin E, Egorov Yu, Bretsko M, Akimova Ya. Fine structure of perturbed Laguerre-Gaussian beams: Hermite-Gaussian mode spectra and topological charge. Appl. Opt. 2020; 59(25): 7680-7687. DOI: 10.1364/AO.396557.
  15. Kotlyar VV, Kovalev AA. Hermite-Gaussian modal laser beams with orbital angular momentum. J Opt Soc Am A 2014; 31(2): 274-282. DOI: 10.1364/JOSAA.31.000274.
  16. Kotlyar VV, Kovalev AA. Topological charge of asymmetric optical vortices. Optics Express 2020; 28(14): 20449-20460. DOI: 10.1364/OE.394273.
  17. Kotlyar VV, Kovalev AA, Porfirev AP. Vortex Hermite-Gaussian laser beams. Opt Lett 2015; 40(5): 701-704. DOI: 10.1364/OL.40.000701.
  18. Abramochkin EG, Volostnikov VG. Generalized Gaussian beams. J Opt A: Pure Appl Opt 2004; 6(5): S157-S161. DOI: 10.1088/1464-4258/6/5/001.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20