(46-5) 01 * << * >> * Русский * English * Содержание * Все выпуски
Индексы поляризационной сингулярности, аналогичные топологическому заряду, для световых полей с неоднородной поляризацией
В.В. Котляр 1,2, А.А. Ковалёв 1,2, В.Д. Зайцев 1,2
1 ИСОИ РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН,
443001, Россия, г. Самара, ул. Молодогвардейская, д. 151;
2 Самарский национальный исследовательский университет имени академика С.П. Королёва,
443086, Россия, г. Самара, Московское шоссе, д. 34
PDF, 4554 kB
DOI: 10.18287/2412-6179-CO-1126
Страницы: 671-681.
Аннотация:
В данной работе для разных векторных и гибридных световых полей, в том числе для полей с многими точками поляризационной сингулярности, найдены индексы поляризационной сингулярности по известной формуле М. Берри, которая применяется обычно для нахождения топологического заряда скалярных вихревых световых полей. Показано, что у полей, состояние поляризации которых зависит только от полярного угла в сечении пучка, могут быть либо линии поляризационной сингулярности, исходящие из центра, либо одна точка поляризационной сингулярности, находящаяся в центре сечения пучка. Если состояние поляризации поля зависит только от радиальной переменной, то такие поля не имеют точек поляризационной сингулярности и их индекс равен нулю. Если поляризационное состояние векторного поля зависит от обеих полярных координат, то такое поле может иметь несколько точек поляризационной сингулярности, расположенных в разных местах в сечении пучка. Также мы рассмотрели векторное поле с радиальной поляризацией высокого порядка и с действительным параметром. Такое поле при разных значениях параметра имеет либо несколько линий поляризационной сингулярности, исходящих из центра, либо особую точку в центре. При этом индекс поляризационной сингулярности такого поля при разных параметрах может быть либо полуцелым, либо целым, либо нулевым.
Ключевые слова:
неоднородная поляризация, поляризационная сингулярность, индекс поляризационной сингулярности, индекс Пуанкаре–Хопфа, топологический заряд.
Благодарности
Работа выполнена при поддержке Российского научного фонда (грант 22-22-00265) (теория), а также Министерства науки и высшего образования РФ в рамках выполнения работ по Государственному заданию ФНИЦ «Кристаллография и фотоника» РАН (моделирование).
Цитирование:
Котляр, В.В. Индексы поляризационной сингулярности, аналогичные топологическому заряду, для световых полей с неоднородной поляризацией / В.В. Котляр, А.А. Ковалёв, В.Д. Зайцев // Компьютерная оптика. – 2022. – Т. 46, № 5. – С. 671-681. – DOI: 10.18287/2412-6179-CO-1126.
Citation:
Kotlyar VV, Kovalev AA, Zaitsev VD. Inhomogeneously polarized light fields: polarization singularity indices derived by analogy with the topological charge. Computer Optics 2022; 46(5): 671-681. DOI: 10.18287/2412-6179-CO-1126.
References:
- Nye JE. Natural focusing and fine structure of light. 1st ed. Institute of Physics Publishing; 1999. ISBN: 978-0-7503-0610-2.
- Freund I. Poincaré vortices. Opt Lett 2001; 26(24): 1996-1998. DOI: 10.1364/OL.26.001996.
- Freund I. Polarization singularity indices in Gaussian laser beams. Opt Commun 2002; 201(4-6): 251-270. DOI: 10.1016/S0030-4018(01)01725-4.
- Freund I, Mokhun AI, Soskin MS, Angelsky OV, Mokhun II. Stokes singularity relations. Opt Lett 2002; 27(7): 545-547. DOI: 10.1364/OL.27.000545.
- Vyas S, Kozawa Y, Sato S. Polarization singularities in superposition of vector beams. Opt Express 2013; 21(7): 8972-8986. DOI: 10.1364/OE.21.008972.
- Kovalev AA, Kotlyar VV. Fresnel and Fraunhofer diffraction of a Gaussian beam with several polarization singularities. Computer Optics 2018; 42(2): 179-189. DOI: 10.18287/2412-6179-2018-42-2-179-189.
- Ruchi, Senthilkumaran P, Pal SK. Phase singularities to polarization singularirities. Int J Opt 2020; 2020: 2812803. DOI: 10.1155/2020/2812803.
- Komal B, Deepa S, Kumar S, Senthilkumaran P. Polarization singularity index determination by using a titled lens. Appl Opt 2021; 60(12): 3266-3271. DOI: 10.1364/AO.420554.
- Berry MV. Optical vortices evolving from helicoidal integer and fractional phase steps. J Opt A–Pure Appl Opt 2004; 6(2): 259-268. DOI: 10.1088/1464-4258/6/2/018.
- Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photon 2009; 1(1): 1-57. DOI: 10.1364/AOP.1.000001.
- Kolyar VV, Stafeev SS, Kovalev AA. Sharp focusing of a light field with polarization and phase singularities of an arbitrary order. Computer Optics 2019; 43(3): 337-346. DOI: 10.18287/2412-6179-2019-43-3-337-346.
- Born M, Wolf E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. 7th ed. Cambridge: Cambridge University Press; 1999.
- Kotlyar VV, Kovalev AA, Stafeev SS, Nalimov AG, Rasouli S. Tightly focusing vector beams containing V-point polarization singularities. Opt Las Tech 2022; 145: 107479. DOI: 10.1016/j.optlastec.2021.107479.
- Kotlyar VV, Stafeev SS, Kozlova ES, Nalimov AG. Spin-orbital conversion of a strongly focused light wave with high-order cylindrical–circular polarization. Sensors 2021; 21(19): 6424. DOI: 10.3390/s21196424.
- Dennis MR. Polarization singularities in paraxial vector fields: morphology and statistics. Opt Commun 2002; 213(4-6): 201-221. DOI: 10.1016/S0030-4018(02)02088-6.
- Berry MV. Index formulae for singular lines of polariza-tion. J Opt A–Pure Appl Opt 2004; 6(7): 675-678. DOI: 10.1088/1464-4258/6/7/003.
- Kotlyar VV, Stafeev SS, Nalimov AG. Sharp focusing of a hybrid vector beam with a polarization singularity. Photon-ics 2021; 8(6): 227. DOI: 10.3390/photonics8060227.
- Beckley AM, Brown TG, Alonso MA. Full Poincaré beams. Opt Express 2010; 18(10): 10777-10785. DOI: 10.1364/OE.18.010777.
- Chen S, Zhou X, Liu Y, Ling X, Luo H, Wen S. Generation of arbitrary cylindrical vector beams on the higher order Poincaré sphere. Opt Lett 2014; 39(18): 5274-5276. DOI: 10.1364/OL.39.005274.
- Volyar AV, Fadeeva TA. Generation of singular beams in uniaxial crystals. Optics and Spectroscopy 2003; 94: 235-244. DOI: 10.1134/1.1555184.
- Li T, Cao B, Zhang X, Ma X, Huang K, Lu X. Polarization transitions in the focus of radial-variant vector circular Airy beams. J Opt Soc Am A 2019; 36(4): 526-532. DOI: 10.1364/JOSAA.36.000526.
- Rashid M, Marago OM, Jones PH. Focusing of high order cylindrical vector beams. J Opt A–Pure Appl Opt 2009; 11(6): 065204. DOI: 10.1088/1464-4258/11/6/065204.
- Kotlyar VV, Stafeev SS, Kovalev AA. Reverse and toroidal flux of light fields with both phase and polarization higher-order singularities in the sharp focus area. Opt Express 2019; 27(12): 16689-16702. DOI: 10.1364/OE.27.016689
.
© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20