(46-5) 02 * << * >> * Русский * English * Содержание * Все выпуски
  
Формирование цилиндрических векторных пучков высоких порядков при помощи секторных сэндвич-структур
 С.В. Карпеев 1,2, В.В. Подлипнов 1,2, С.А. Дегтярев 1,2, А.М. Алгубили 2
 1 ИСОИ РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН,
 
     443001, Россия, г. Самара, ул. Молодогвардейская, д. 151;
     2 Самарский национальный исследовательский университет имени академика С.П. Королёва,
     443086, Россия, г. Самара, Московское шоссе, д. 34
 
 PDF, 2651 kB
  PDF, 2651 kB
DOI: 10.18287/2412-6179-CO-1096
Страницы: 682-691.
Аннотация:
Рассмотрены сложные поляризационно-фазовые преобразования, которые реализуются с использованием простых в изготовлении оптических элементов. Технология изготовления таких элементов базируется на аксиально-симметричной дискретизации требуемых поляризационных и фазовых распределений. Такое представление приводит к оптическим элементам в виде секторных сэндвич-структур, состоящих из сложенных вместе поляризационной и фазовой пластин. В работе численно и экспериментально исследованы основные типы таких секторных сэндвич-структур для формирования цилиндрических поляризаций 2-го порядка.
Ключевые слова:
векторные пучки, секторные сэндвич-структуры.
Благодарности
Работа выполнена при  поддержке Российского научного фонда, грант № 22-12-00041.
Цитирование:
Карпеев, С.В. Формирование цилиндрических векторных пучков высоких порядков при помощи секторных сэндвич-структур / С.В. Карпеев, В.В. Подлипнов, С.А. Дегтярев, А.М. Алгубили // Компьютерная оптика. – 2022. – Т. 46, № 5. – С. 682-691. – DOI: 10.18287/2412-6179-CO-1096.
Citation:
Karpeev SV, Podlipnov VV, Degtyаrev SA, Algubili AM. Formation of high-order cylindrical vector beams with sector sandwich structures. Computer Optics 2022; 46(5): 682-691. DOI: 10.18287/2412-6179-CO-1096.
References:
  - Zhan Q. Cylindrical  vector beams: from mathematical concepts to applications. Adv Opt Photon 2009;  1(1): 1-57.
- Zhou P, Wang X, Ma Y, Ma  H, Xu X, Liu Z. Propagation property of a nonuniformly polarized beam array in  turbulent atmosphere. Appl Opt 2011; 50: 1234-1239. 
 
- Malik  M, O’Sullivan M, Rodenburg B, Mirhosseini M, Leach J, Lavery MPJ, Padgett MJ,  Boyd RW. Influence of atmospheric turbulence on optical communications using  orbital angular momentum for encoding. Opt Express 2012; 20(12): 13195-13200.
 
- Dong  Y, Cai Y, Zhao C, Yao M. Statistical properties of a cylindrical vector  partially coherent beam in turbulent atmosphere. Appl Phys B 2013; 112(2):  247-259.
 
- Millione  G, Nguyen ThA, Leach J, Nolan DA, Alfano RR. Using the nonseparability of vector beams to  encode information for optical communication. Opt Lett 2015; 40(21): 4887-4890.
 
- Chen  ZY, Yan LS, Pan Y, Jiang L, Yi AL, Pan W, Luo B. Use of polarization freedom  beyond polarization-division multiplexing to support high-speed and  spectral-efficient data transmission. Light Sci Appl 2017; 6: e16207.
 
- Qiao  W, Lei T, Wu Z, Gao S, Li Z, Yuan X. Approach to multiplexing fiber  communication with cylindrical vector beams. Opt Lett 2017; 42(13): 2579-2582.
 
- Borghi R, Santarsiero  M, Alonso MA. Highly focused spirally polarized beams. J Opt Soc Am A 2005; 22(7):  1420-1431.
 
- Kozawa  Y, Sato S. Sharper focal spot formed by higher-order radially polarized laser  beams. J Opt Soc Am A 2007; 24(6): 1793-1798.
 
- Rashid  M, Marago OM, Jones PH. Focusing of high order cylindrical vector beams. J Opt  2009; 11(6): 065204.
 
- Rao  L, Pu J, Chen Z, Yei P. Focus shaping of cylindrically polarized vortex beams  by a high numerical-aperture lens. Opt Laser Technol 2009; 41(3): 241-246.
 
- Khonina  SN, Golub I. Enlightening darkness to diffraction limit and beyond: comparison  and optimization of different polarizations for dark spot generation. J Opt Soc  Am A 2012; 29(7): 1470-1474. DOI: 10.1364/JOSAA.29.001470.
 
- Zhou  Z, Zhu L. Tight focusing of axially symmetric polarized beams with fractional  orders. Opt Quant Electron 2015; 48(44): 44.
 
- Porfirev  AP, Ustinov AV, Khonina SN. Polarization conversion  when focusing cylindrically polarized vortex beams. Sci Rep 2016; 6(1): 6. DOI:  10.1038/s41598-016-0015-2.
 
- Man  Z, Bai Z, Zhang S, Li X, Li J, Ge X, Zhang Y, Fu S. Redistributing the energy  flow of a tightly focused radially polarized optical field by designing phase  masks. Opt Express 2018; 26(18): 23935-23944.
 
- Porfirev  AP, Khonina SN. Astigmatic transformation of optical vortex beams with  high-order cylindrical polarization. J Opt Soc Am B 2019; 36(8): 2193-2201.  DOI: 10.1364/JOSAB.36.002193.
 
- Khonina  SN. Vortex beams with high-order cylindrical polarization: features of focal  distributions. Appl Phys B 2019; 125: 100. DOI: 10.1007/s00340-019-7212-1.
 
- Youngworth KS, Brown TG. Focusing of high  numerical aperture cylindrical-vector beams. Opt Express 2000; 7: 77-87.
 
- Chen W, Zhan Q.  Three-dimensional focus shaping with cylindrical vector beams. Opt Commun 2006;  265: 411-417.
 
- Wang  XL, Ding J, Qin JQ, Chen J, Fan YX, Wang HT. Configurable three-dimensional optical cage  generated from cylindrical beams. Opt Commun 2009; 282: 3421-3425.
 
- Khonina  SN, Golub I. Engineering the smallest 3D symmetrical  bright and dark focal spots. J Opt Soc Am A 2013; 30(10): 2029-2033. DOI: 10.1364/JOSAA.30.002029. 
 
- Khonina  SN, Ustinov AV, Volotovsky SG. Shaping of  spherical light intensity based on the interference of tightly focused beams  with different polarizations. Opt Laser Technol 2014; 60: 99-106. DOI:  10.1016/j.optlastec.2014.01.012. 
 
- Qin  F, Huang K, Wu J, Jiao J, Luo X, Qiu C, Hong M. Shaping a subwavelength needle  with ultra-long focal length by focusing azimuthally polarized light. Sci Rep  2015; 5: 9977.
 
- Man  Z, Bai Z, Li J, Zhang S, Li X, Zhang Y, Ge X, Fu S. Optical cage generated by  azimuthal- and radial-variant vector beams. Appl Opt 2018; 57: 3592-3597.
 
- Török  P, Munro PRT. The use of Gauss–Laguerre vector beams in STED microscopy. Opt  Express 2004; 12: 3605-3617.
 
- Bokor  N, Iketabi Y, Watanabe T, Daigoku K, Davidson N, Fujii M. On polarization  effects in fluorescence depletion microscopy. Opt Commun 2007; 272: 263-268.
 
- Khonina SN,  Golub I. How low can STED go? Comparison of different write-erase beam  combinations for stimulated emission depletion microscopy. J Opt Soc Am A 2012;  29(10): 2242-2246. DOI: 10.1364/JOSAA.29.002242.
 
- Yan  S, Yao B. Radiation forces of a highly focused radially polarized beam on  spherical particles. Phys Rev A 2007; 76(5): 053836.
 
- Xue  Y, Wang Y, Zhou S, Chen H, Rui G, Gu B, Zhan Q. Focus shaping and optical  manipulation using highly focused second-order full Poincaré beam. J Opt Soc Am  A 2018; 35: 953-958.
 
- Shi  P, Du L, Yuan X. Structured spin angular momentum in highly focused cylindrical  vector vortex beams for optical manipulation. Opt Express 2018; 26(18):  23449-23459.
 
- Kraus  M, Ahmed MA, Michalowski A, Voss A, Weber R, Graf T. Microdrilling in steel  using ultrashort pulsed laser beams with radial and azimuthal polarization. Opt  Express 2010; 18: 22305-22313.
 
- Nivas JJJ,  Cardano F, Song Z, Rubano A, Fittipaldi R, Vecchione A, Paparo D, Marrucci L,  Bruzzese R, Amoruso S. Surface structuring with polarization-singular  femtosecond laser beams generated by a q-plate. Sci Rep 2017; 7: 42142.
 
- Kudryashov  SI, Danilov PA, Porfirev AP, Saraeva IN, Rudenko AA, Busleev NI, Umanskaya SF,  Kuchmizhak AA, Zayarny DA, Ionin AA, Khonina SN. Symmetry-wise nanopatterning  and plasmonic excitation of ring-like gold nanoholes by structured femtosecond  laser pulses with different polarizations. Opt Lett 2019; 44(5): 1129-1132.  DOI: 10.1364/OL.44.001129.
 
- Syubaev  SA, Zhizhchenko AYu, Pavlov DV, Gurbatov SO, Pustovalov EV, Porfirev AP,  Khonina SN, Kulinich SA, Rayappan JBB, Kudryashov SI, Kuchmizhak AA. Plasmonic  nanolenses produced by cylindrical vector beam printing for sensing  applications. Sci Rep 2019; 9: 19750. DOI: 10.1038/s41598-019-56077-8.
 
- Mawet  D, Riaud P, Surdej J, Baudrand J. Subwavelength surface-relief gratings for  stellar coronagraphy. Appl Opt 2005; 44(34): 7313-7321.
 
- Mawet  D, Serabyn E, Liewer K, Burruss R, Hickey J, Shemo D. The vector vortex  coronagraph: Laboratory results and first light at palomar observatory.  Astrophys J 2010; 709(1): 53-57.
 
- Khonina SN,  Ustinov AV, Degtyarev SA. Inverse energy flux of focused radially polarized optical  beams. Phys Rev A 2018; 98(4): 043823. DOI: 10.1103/PhysRevA.98.043823.
 
- Kotlyar  VV, Stafeev SS, Nalimov AG. Energy backflow in the focus of a lightbeam with  phase or polarization singularity. Phys Rev A 2019; 99(3): 033840. DOI:  10.1103/PhysRevA.99.033840.
 
- Tidwell SC, Ford DH, Kimura WD. Generating  radially polarized beams interferometrically. Appl Opt 1990; 29(15): 2234-2239.
 
- Khonina  SN, Karpeev SV. Grating-based optical scheme for the universal generation of  inhomogeneously polarized laser beams. Appl Opt 2010; 49(10): 1734-1738. DOI:  10.1364/AO.49.001734.
 
- Liu  S, Li P, Peng T, Zhao J. Generation of arbitrary spatially variant polarization  beams with a trapezoid Sagnac interferometer. Opt Express 2012; 20(19):  21715-21721.
 
- Khonina  SN, Karpeev SV, Alferov SV. Polarization converter for higher-order laser beams  using a single binary diffractive optical element as beam splitter. Opt Lett  2012; 37(12): 2385-2387. DOI: 10.1364/OL.37.002385.
 
- Mendoza-Hernández  J, Ferrer-Garcia MF, Rojas-Santana JA, Lopez-Mago D. Cylindrical vector beam  generator using atwo-element interferometer. Opt Express 2019; 27: 31810-31819.  DOI: 10.1364/OE.27.031810.
 
- Machavariani  G, Lumer Y, Moshe I, Meir A, Jackel S, Davidson N. Birefringence-induced  bifocusing for selection of radially or azimuthally polarized laser modes. Appl  Opt 2007; 46: 3304-3310.
 
- Fadeyeva  TA, Shvedov VG, Izdebskaya YV, Volyar AV, Brasselet E, Neshev DN, Desyatnikov  AS, Krolikowski W, Kivshar YS. Spatially engineered polarization states and  optical vortices in uniaxial crystals. Opt Express 2010; 18(10): 10848-10863.
 
- Khonina  SN, Karpeev SV, Paranin VD, Morozov AA. Polarization conversion under focusing  of vortex laser beams along the axis of anisotropic crystals. Phys Lett A 2017;  381: 2444-2455. DOI: 10.1016/j.physleta.2017.05.025.
 
- Khonina  SN, Porfirev AP, Kazanskiy NL. Variable transformation of singular cylindrical  vector beams using anisotropic crystals. Sci Rep 2020; 10: 5590. DOI:  10.1038/s41598-020-62546-2.
 
- Davis  JA, McNamara DE, Cottrell DM, Sonehara T. Two-dimensional polarization encoding  with a phase-only liquid crystal spatial light modulator. Appl Opt 2000; 39:  1549-1554. DOI: 10.1364/AO.39.001549.
 
- Moreno I, Davis JA, Hernandez TM, Cottrell  DM, Sand D. Complete polarization control of light from a liquid crystal  spatial light modulator. Opt Express 2012; 20: 364-376.
 
- Rong  Z-Y, Han Y-J, Wang S-Z, Guo C-S. Generation of arbitrary vector beams with  cascaded liquid crystal spatial light modulators. Opt Express 2014; 22(2):  1636-1644. DOI: 10.1364/OE.22.001636.
 
- Rosales-Guzmán  C, Bhebhe N, Forbes A. Simultaneous generation of multiple vector beams on a  single SLM. Opt Express 2017; 25(21): 25697-25706. DOI: 10.1364/OE.25.025697.
 
- Khonina  SN, Ustinov AV, Porfirev AP. Vector Lissajous laser beams. Opt Lett 2020; 45(15):  4112-4115. DOI: 10.1364/OL.398209. 
 
- Ren  Y-X, Lu R-D, Gong L. Tailoring light with a digital micromirror device. Annalen  der Physik 2015; 527: 447-470. DOI: 10.1002/andp.201500111.
 
- Mitchell  KJ, Turtaev S, Padgett MJ, Čižmár T, Phillips DB. High-speed spatial control of  the intensity, phase and polarisation of vector beams using a digital  micro-mirror device. Opt Express 2016; 24(25): 29269-29282. DOI:  10.1364/OE.24.029269.
 
- Scholes  S, Kara R, Pinnell J, Rodríguez-Fajardo V, Forbes A. Structured light with  digital micromirror devices: a guide to bestpractice. Opt Eng 2019; 59(4):  041202. DOI: 10.1117/1.OE.59.4.041202.
 
- Karimi  E, Piccirillo B, Nagali E, Marrucci L, Santamato E. Efficient generation and  sorting of orbitalangular momentum eigenmodes of light by thermally tuned  q-plates. Appl Phys Lett 2009; 94: 231124.
 
- Shu  W, Ling X, Fu X, Liu Y, Ke Y, Luo H. Polarization evolution of vector beams  generated by q-plates. Photon Res 2017; 5: 64-72.
 
- Khonina  SN, Ustinov AV, Fomchenkov SA, Porfirev AP. Formation of hybrid higher-order  cylindrical vector beams using binary multi-sector phase plates. Sci Rep 2018;  8: 14320. DOI: 10.1038/s41598-018-32469-0.
 
- Rubano  A, Cardano F, Piccirillo B, Marrucci L. Q-plate technology: a progress review  [Invited]. J Opt Soc Am B 2019; 36: D70-D87.
 
- Niv  A, Biener G, Kleiner V, Hasman E. Propagation-invariant vectorial Bessel beams  obtained by use of quantized Pancharatnam–Berry phase optical elements. Opt  Lett 2004; 29(3): 238-240.
 
- Bomzon Z,  Biener G, Kleiner V, Hasman E. Radially and azimuthally polarized beams  generated by space-variant dielectric subwavelength gratings. Opt Lett 2002;  27(5): 285-287.
 
- Stafeev  SS, Kotlyar VV, Nalimov AG, Kotlyar MV, O’Faolain L. Subwavelength gratings for  polarization conversion and focusing of laser light. Photonics Nanostruct 2017;  27: 32-41. DOI: 10.1016/j.photonics.2017.09.001.
 
- Degtyarev  SA, Volotovsky SG, Khonina SN. Sublinearly chirped metalenses for forming  abruptly autofocusing cylindrically polarized beams. J Opt Soc Am B 2018;  35(8): 1963-1969. DOI: 10.1364/JOSAB.35.001963. 
 
- Khonina  SN, Degtyarev SA, Ustinov AV, Porfirev AP. Metalenses for the generation of  vector Lissajous beams with a complex Poynting vector density. Opt Express  2021; 29(12): 18651-18662. DOI: 10.1364/OE.428453.
 
- Khonina  SN, Tukmakov KN, Degtyarev SA, Reshetnikov   AS, Pavelyev VS, Knyazev BA,  Choporova YuYu. Design, fabrication and investigation of a subwavelength axicon  for terahertz beam polarization transforming. Computer Optics 2019; 43(5):  756-764. DOI: 10.18287/2412-6179-2019-43-5-756-764.
 
- Pavelyev  VS, Khonina SN, Degtyarev SA, Tukmakov KN, Reshetnikov AS, Gerasimov VV,  Osintseva ND, Knyazev BA. Subwavelength silicon terahertz optics for generation  of coherent beams with pre-given polarization state. 46th Int Conf on Infrared,  Millimeter and Terahertz Waves (IRMMW-THz) 2021: 1-1. DOI:  10.1109/IRMMW-THz50926.2021.9567286.
 
- Machavariani  G, Lumer Y, Moshe I, Meir A, Jackel S. Efficient extracavity generation of  radially and azimuthally polarized beams. Opt Lett 2007; 32(11): 1468-1470.  DOI: 10.1364/OL.32.001468.
 
- Alferov  SV, Karpeev SV, Khonina SN, Moiseev OYu. Experimental study of focusing of  inhomogeneously polarized beams generated using sector polarizing plates. Computer  Optics 2014; 38(1): 57-64. DOI: 10.18287/0134-2452-2014-38-1-57-64.
 
- Karpeev  SV, Podlipnov VV, Khonina SN, Paranin VD, Reshetnikov   AS. A four-sector polarization  converter integrated in a calcite crystal. Computer Optics 2018; 42(3):  401-407. DOI: 10.18287/2412-6179-2018-42-3-401-407.
 
- Man  Zh, Min Ch, Zhang Y, Shen Z, Yuan X-C. Arbitrary vector beams with selective  polarization states patterned by tailored polarizing films. Laser Phys 2013;  23(10): 105001. DOI: 10.1088/1054-660X/23/10/105001.
 
- Khonina  SN, Karpeev SV, Porfirev AP. Sector sandwich structure: an easy-to-manufacture  way towards complex vector beam generation. Opt Express 2020; 28(19):  27628-27643. DOI: 10.1364/OE.398435.
 
- Karpeev  S, Paranin V, Khonina S. Generation of a controlled double-ring-shaped radially  polarized spiral laser beam using a combination of a binary axicon with an interference  polarizer. J Opt 2017; 19(5): 055701. DOI: 10.1088/2040-8986/aa640c.
 
- Paranin  VD, Karpeev SV, Khonina SN. Generation of radially polarized beams based on the  refractive elements with interference polarizing coatings. Computer Optics  2015; 39(4): 492-499. DOI: 10.18287/0134-2452-2015-39-4-492-499.
 
- Stafeev  SS, Nalimov AG, Kotlyar MV, Gibson D, Song S, O’Faolain L, Kotlyar VV.  Microlens-aided focusing of linearly and azimuthally polarized laser light. Opt  Express 2016; 24(26): 29800-29813. DOI: 10.1364/OE.24.029800.
 
- Kharitonov SI,  Khonina SN. Conversion of a conical wave with circular polarization into a  vortex cylindrically polarized beam in a metal waveguide. Computer Optics 2018;  42(2): 197-211. DOI: 10.18287/2412-6179-2018-42-2-197-211.
 
- Moreno I, Davis JA, Ruiz I, Cottrell DM.  Decomposition of radially and azimuthally polarized beams using a circular-polarization  and vortex-sensing diffraction grating. Opt Express 2010; 18: 7173-7183.
 
- Fu  S, Zhang S, Wang T, Gao C. Rectilinear lattices of polarization vortices with  various spatial polarization distributions. Opt Express 2016; 24(16):  18486-18491.
 
- Moreno  I, Davis JA, Badham K, Sánchez-López MM, Holland JE, Cottrell DM. Vector beam polarization state spectrum  analyzer. Sci Rep 2017; 7(1): 2216.
 
- Khonina  SN, Porfirev AP, Karpeev SV. Recognition of polarization and phase states of  light based on the interaction of non-uniformly polarized laser beams with  singular phase structures. Opt     Express 2019; 27(13): 18484-18492. DOI: 10.1364/OE.27.018484.
 
- Pachava  S, Dharmavarapu R, Vijayakumar A, Jayakumar S, Manthalkar A, Dixit A,  Viswanathan NK, Srinivasan B, Bhattacharya S. Generation and decomposition of  scalar and vector modes carrying orbital angular momentum: A review. Opt Eng 2019;  59(4): 041205.
 
- Wang  Z, Zhang N, Yuan X-C. High-volume  optical vortex multiplexing and de-multiplexing for free-space optical  communication. Opt Express 2011; 19: 482-492.
 
- Qiu H, Yu H, Hu  T, Jiang G, Shao H, Yu P, Yang J, Jiang X. Silicon mode multi/demultiplexer  based on multimode grating-assisted coupler. Opt Express 2013; 21(15):  17904-17911.
 
- Kazanskiy  NL, Khonina SN, Karpeev SV, Porfirev AP. Diffractive optical elements for  multiplexing structured laser beams. Quantum Electron 2020; 50(7): 629-635. DOI:  10.1070/QEL17276.
 
- Khonina  SN, Porfirev AP, Volotovskiy SG, Ustinov AV, Fomchenkov SA, Pavelyev VS,  Schröter S, Duparré M. Generation of multiple vector optical bottle beams.  Photonics 2021; 8(6): 218. DOI: 10.3390/photonics8060218.
 
- Zhao  Y, Edgar JS, Jeffries GDM, McGloin D, Chiu DT. Spin-to-orbital angular momentum  conversion in a strongly focused optical beam. Phys Rev Lett 2007; 99(7):  073901.
 
- Zhu  J, Chen Y, Zhang Y, Cai X, Yu S. Spin and orbital angular momentum and their  conversion in cylindrical vector vortices. Opt Lett 2014; 39(15): 4435-4438.
 
- Bliokh KY, Rodriguez-Fortuno F, Nori F,  Zayats AV. Spin-orbit interactions of light. Nat Photon 2015; 9(12): 796-808.
 
- Khonina  SN, Golub I. Generation of an optical ball bearing facilitated by coupling  between handedness of polarization of light and helicity of its phase. J Opt  Soc Am B 2019; 36(8): 2087-2091. DOI: 10.1364/JOSAB.36.002087.
 
- Alferov  SV, Khonina SN, Karpeev SV. Study of polarization properties of fiber-optics  probes with use of a binary phase plate. J Opt Soc Am A 2014; 31(4): 802-807. DOI:  10.1364/JOSAA.31.000802.     
    
- Berezny AE, Karpeev SV, Uspleniev GV.  Computer-generated holographic optical elements produced by photolithography.  Opt Lasers Eng 1991; 15(5): 331-340. DOI: 10.1016/0143-8166(91)90020-T.
      
      
    
  
  © 2009, IPSI RAS
    Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7  (846)  242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический  редактор), факс: +7 (846) 332-56-20