(46-5) 02 * << * >> * Русский * English * Содержание * Все выпуски

Формирование цилиндрических векторных пучков высоких порядков при помощи секторных сэндвич-структур
С.В. Карпеев 1,2, В.В. Подлипнов 1,2, С.А. Дегтярев 1,2, А.М. Алгубили 2

ИСОИ РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН,
443001, Россия, г. Самара, ул. Молодогвардейская, д. 151;
Самарский национальный исследовательский университет имени академика С.П. Королёва,
443086, Россия, г. Самара, Московское шоссе, д. 34

 PDF, 2651 kB

DOI: 10.18287/2412-6179-CO-1096

Страницы: 682-691.

Аннотация:
Рассмотрены сложные поляризационно-фазовые преобразования, которые реализуются с использованием простых в изготовлении оптических элементов. Технология изготовления таких элементов базируется на аксиально-симметричной дискретизации требуемых поляризационных и фазовых распределений. Такое представление приводит к оптическим элементам в виде секторных сэндвич-структур, состоящих из сложенных вместе поляризационной и фазовой пластин. В работе численно и экспериментально исследованы основные типы таких секторных сэндвич-структур для формирования цилиндрических поляризаций 2-го порядка.

Ключевые слова:
векторные пучки, секторные сэндвич-структуры.

Благодарности
Работа выполнена при поддержке Российского научного фонда, грант № 22-12-00041.

Цитирование:
Карпеев, С.В. Формирование цилиндрических векторных пучков высоких порядков при помощи секторных сэндвич-структур / С.В. Карпеев, В.В. Подлипнов, С.А. Дегтярев, А.М. Алгубили // Компьютерная оптика. – 2022. – Т. 46, № 5. – С. 682-691. – DOI: 10.18287/2412-6179-CO-1096.

Citation:
Karpeev SV, Podlipnov VV, Degtyаrev SA, Algubili AM. Formation of high-order cylindrical vector beams with sector sandwich structures. Computer Optics 2022; 46(5): 682-691. DOI: 10.18287/2412-6179-CO-1096.

References:

  1. Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photon 2009; 1(1): 1-57.
  2. Zhou P, Wang X, Ma Y, Ma H, Xu X, Liu Z. Propagation property of a nonuniformly polarized beam array in turbulent atmosphere. Appl Opt 2011; 50: 1234-1239.
  3. Malik M, O’Sullivan M, Rodenburg B, Mirhosseini M, Leach J, Lavery MPJ, Padgett MJ, Boyd RW. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Opt Express 2012; 20(12): 13195-13200.
  4. Dong Y, Cai Y, Zhao C, Yao M. Statistical properties of a cylindrical vector partially coherent beam in turbulent atmosphere. Appl Phys B 2013; 112(2): 247-259.
  5. Millione G, Nguyen ThA, Leach J, Nolan DA, Alfano RR. Using the nonseparability of vector beams to encode information for optical communication. Opt Lett 2015; 40(21): 4887-4890.
  6. Chen ZY, Yan LS, Pan Y, Jiang L, Yi AL, Pan W, Luo B. Use of polarization freedom beyond polarization-division multiplexing to support high-speed and spectral-efficient data transmission. Light Sci Appl 2017; 6: e16207.
  7. Qiao W, Lei T, Wu Z, Gao S, Li Z, Yuan X. Approach to multiplexing fiber communication with cylindrical vector beams. Opt Lett 2017; 42(13): 2579-2582.
  8. Borghi R, Santarsiero M, Alonso MA. Highly focused spirally polarized beams. J Opt Soc Am A 2005; 22(7): 1420-1431.
  9. Kozawa Y, Sato S. Sharper focal spot formed by higher-order radially polarized laser beams. J Opt Soc Am A 2007; 24(6): 1793-1798.
  10. Rashid M, Marago OM, Jones PH. Focusing of high order cylindrical vector beams. J Opt 2009; 11(6): 065204.
  11. Rao L, Pu J, Chen Z, Yei P. Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens. Opt Laser Technol 2009; 41(3): 241-246.
  12. Khonina SN, Golub I. Enlightening darkness to diffraction limit and beyond: comparison and optimization of different polarizations for dark spot generation. J Opt Soc Am A 2012; 29(7): 1470-1474. DOI: 10.1364/JOSAA.29.001470.
  13. Zhou Z, Zhu L. Tight focusing of axially symmetric polarized beams with fractional orders. Opt Quant Electron 2015; 48(44): 44.
  14. Porfirev AP, Ustinov AV, Khonina SN. Polarization conversion when focusing cylindrically polarized vortex beams. Sci Rep 2016; 6(1): 6. DOI: 10.1038/s41598-016-0015-2.
  15. Man Z, Bai Z, Zhang S, Li X, Li J, Ge X, Zhang Y, Fu S. Redistributing the energy flow of a tightly focused radially polarized optical field by designing phase masks. Opt Express 2018; 26(18): 23935-23944.
  16. Porfirev AP, Khonina SN. Astigmatic transformation of optical vortex beams with high-order cylindrical polarization. J Opt Soc Am B 2019; 36(8): 2193-2201. DOI: 10.1364/JOSAB.36.002193.
  17. Khonina SN. Vortex beams with high-order cylindrical polarization: features of focal distributions. Appl Phys B 2019; 125: 100. DOI: 10.1007/s00340-019-7212-1.
  18. Youngworth KS, Brown TG. Focusing of high numerical aperture cylindrical-vector beams. Opt Express 2000; 7: 77-87.
  19. Chen W, Zhan Q. Three-dimensional focus shaping with cylindrical vector beams. Opt Commun 2006; 265: 411-417.
  20. Wang XL, Ding J, Qin JQ, Chen J, Fan YX, Wang HT. Configurable three-dimensional optical cage generated from cylindrical beams. Opt Commun 2009; 282: 3421-3425.
  21. Khonina SN, Golub I. Engineering the smallest 3D symmetrical bright and dark focal spots. J Opt Soc Am A 2013; 30(10): 2029-2033. DOI: 10.1364/JOSAA.30.002029.
  22. Khonina SN, Ustinov AV, Volotovsky SG. Shaping of spherical light intensity based on the interference of tightly focused beams with different polarizations. Opt Laser Technol 2014; 60: 99-106. DOI: 10.1016/j.optlastec.2014.01.012.
  23. Qin F, Huang K, Wu J, Jiao J, Luo X, Qiu C, Hong M. Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light. Sci Rep 2015; 5: 9977.
  24. Man Z, Bai Z, Li J, Zhang S, Li X, Zhang Y, Ge X, Fu S. Optical cage generated by azimuthal- and radial-variant vector beams. Appl Opt 2018; 57: 3592-3597.
  25. Török P, Munro PRT. The use of Gauss–Laguerre vector beams in STED microscopy. Opt Express 2004; 12: 3605-3617.
  26. Bokor N, Iketabi Y, Watanabe T, Daigoku K, Davidson N, Fujii M. On polarization effects in fluorescence depletion microscopy. Opt Commun 2007; 272: 263-268.
  27. Khonina SN, Golub I. How low can STED go? Comparison of different write-erase beam combinations for stimulated emission depletion microscopy. J Opt Soc Am A 2012; 29(10): 2242-2246. DOI: 10.1364/JOSAA.29.002242.
  28. Yan S, Yao B. Radiation forces of a highly focused radially polarized beam on spherical particles. Phys Rev A 2007; 76(5): 053836.
  29. Xue Y, Wang Y, Zhou S, Chen H, Rui G, Gu B, Zhan Q. Focus shaping and optical manipulation using highly focused second-order full Poincaré beam. J Opt Soc Am A 2018; 35: 953-958.
  30. Shi P, Du L, Yuan X. Structured spin angular momentum in highly focused cylindrical vector vortex beams for optical manipulation. Opt Express 2018; 26(18): 23449-23459.
  31. Kraus M, Ahmed MA, Michalowski A, Voss A, Weber R, Graf T. Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization. Opt Express 2010; 18: 22305-22313.
  32. Nivas JJJ, Cardano F, Song Z, Rubano A, Fittipaldi R, Vecchione A, Paparo D, Marrucci L, Bruzzese R, Amoruso S. Surface structuring with polarization-singular femtosecond laser beams generated by a q-plate. Sci Rep 2017; 7: 42142.
  33. Kudryashov SI, Danilov PA, Porfirev AP, Saraeva IN, Rudenko AA, Busleev NI, Umanskaya SF, Kuchmizhak AA, Zayarny DA, Ionin AA, Khonina SN. Symmetry-wise nanopatterning and plasmonic excitation of ring-like gold nanoholes by structured femtosecond laser pulses with different polarizations. Opt Lett 2019; 44(5): 1129-1132. DOI: 10.1364/OL.44.001129.
  34. Syubaev SA, Zhizhchenko AYu, Pavlov DV, Gurbatov SO, Pustovalov EV, Porfirev AP, Khonina SN, Kulinich SA, Rayappan JBB, Kudryashov SI, Kuchmizhak AA. Plasmonic nanolenses produced by cylindrical vector beam printing for sensing applications. Sci Rep 2019; 9: 19750. DOI: 10.1038/s41598-019-56077-8.
  35. Mawet D, Riaud P, Surdej J, Baudrand J. Subwavelength surface-relief gratings for stellar coronagraphy. Appl Opt 2005; 44(34): 7313-7321.
  36. Mawet D, Serabyn E, Liewer K, Burruss R, Hickey J, Shemo D. The vector vortex coronagraph: Laboratory results and first light at palomar observatory. Astrophys J 2010; 709(1): 53-57.
  37. Khonina SN, Ustinov AV, Degtyarev SA. Inverse energy flux of focused radially polarized optical beams. Phys Rev A 2018; 98(4): 043823. DOI: 10.1103/PhysRevA.98.043823.
  38. Kotlyar VV, Stafeev SS, Nalimov AG. Energy backflow in the focus of a lightbeam with phase or polarization singularity. Phys Rev A 2019; 99(3): 033840. DOI: 10.1103/PhysRevA.99.033840.
  39. Tidwell SC, Ford DH, Kimura WD. Generating radially polarized beams interferometrically. Appl Opt 1990; 29(15): 2234-2239.
  40. Khonina SN, Karpeev SV. Grating-based optical scheme for the universal generation of inhomogeneously polarized laser beams. Appl Opt 2010; 49(10): 1734-1738. DOI: 10.1364/AO.49.001734.
  41. Liu S, Li P, Peng T, Zhao J. Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer. Opt Express 2012; 20(19): 21715-21721.
  42. Khonina SN, Karpeev SV, Alferov SV. Polarization converter for higher-order laser beams using a single binary diffractive optical element as beam splitter. Opt Lett 2012; 37(12): 2385-2387. DOI: 10.1364/OL.37.002385.
  43. Mendoza-Hernández J, Ferrer-Garcia MF, Rojas-Santana JA, Lopez-Mago D. Cylindrical vector beam generator using atwo-element interferometer. Opt Express 2019; 27: 31810-31819. DOI: 10.1364/OE.27.031810.
  44. Machavariani G, Lumer Y, Moshe I, Meir A, Jackel S, Davidson N. Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes. Appl Opt 2007; 46: 3304-3310.
  45. Fadeyeva TA, Shvedov VG, Izdebskaya YV, Volyar AV, Brasselet E, Neshev DN, Desyatnikov AS, Krolikowski W, Kivshar YS. Spatially engineered polarization states and optical vortices in uniaxial crystals. Opt Express 2010; 18(10): 10848-10863.
  46. Khonina SN, Karpeev SV, Paranin VD, Morozov AA. Polarization conversion under focusing of vortex laser beams along the axis of anisotropic crystals. Phys Lett A 2017; 381: 2444-2455. DOI: 10.1016/j.physleta.2017.05.025.
  47. Khonina SN, Porfirev AP, Kazanskiy NL. Variable transformation of singular cylindrical vector beams using anisotropic crystals. Sci Rep 2020; 10: 5590. DOI: 10.1038/s41598-020-62546-2.
  48. Davis JA, McNamara DE, Cottrell DM, Sonehara T. Two-dimensional polarization encoding with a phase-only liquid crystal spatial light modulator. Appl Opt 2000; 39: 1549-1554. DOI: 10.1364/AO.39.001549.
  49. Moreno I, Davis JA, Hernandez TM, Cottrell DM, Sand D. Complete polarization control of light from a liquid crystal spatial light modulator. Opt Express 2012; 20: 364-376.
  50. Rong Z-Y, Han Y-J, Wang S-Z, Guo C-S. Generation of arbitrary vector beams with cascaded liquid crystal spatial light modulators. Opt Express 2014; 22(2): 1636-1644. DOI: 10.1364/OE.22.001636.
  51. Rosales-Guzmán C, Bhebhe N, Forbes A. Simultaneous generation of multiple vector beams on a single SLM. Opt Express 2017; 25(21): 25697-25706. DOI: 10.1364/OE.25.025697.
  52. Khonina SN, Ustinov AV, Porfirev AP. Vector Lissajous laser beams. Opt Lett 2020; 45(15): 4112-4115. DOI: 10.1364/OL.398209.
  53. Ren Y-X, Lu R-D, Gong L. Tailoring light with a digital micromirror device. Annalen der Physik 2015; 527: 447-470. DOI: 10.1002/andp.201500111.
  54. Mitchell KJ, Turtaev S, Padgett MJ, Čižmár T, Phillips DB. High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device. Opt Express 2016; 24(25): 29269-29282. DOI: 10.1364/OE.24.029269.
  55. Scholes S, Kara R, Pinnell J, Rodríguez-Fajardo V, Forbes A. Structured light with digital micromirror devices: a guide to bestpractice. Opt Eng 2019; 59(4): 041202. DOI: 10.1117/1.OE.59.4.041202.
  56. Karimi E, Piccirillo B, Nagali E, Marrucci L, Santamato E. Efficient generation and sorting of orbitalangular momentum eigenmodes of light by thermally tuned q-plates. Appl Phys Lett 2009; 94: 231124.
  57. Shu W, Ling X, Fu X, Liu Y, Ke Y, Luo H. Polarization evolution of vector beams generated by q-plates. Photon Res 2017; 5: 64-72.
  58. Khonina SN, Ustinov AV, Fomchenkov SA, Porfirev AP. Formation of hybrid higher-order cylindrical vector beams using binary multi-sector phase plates. Sci Rep 2018; 8: 14320. DOI: 10.1038/s41598-018-32469-0.
  59. Rubano A, Cardano F, Piccirillo B, Marrucci L. Q-plate technology: a progress review [Invited]. J Opt Soc Am B 2019; 36: D70-D87.
  60. Niv A, Biener G, Kleiner V, Hasman E. Propagation-invariant vectorial Bessel beams obtained by use of quantized Pancharatnam–Berry phase optical elements. Opt Lett 2004; 29(3): 238-240.
  61. Bomzon Z, Biener G, Kleiner V, Hasman E. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings. Opt Lett 2002; 27(5): 285-287.
  62. Stafeev SS, Kotlyar VV, Nalimov AG, Kotlyar MV, O’Faolain L. Subwavelength gratings for polarization conversion and focusing of laser light. Photonics Nanostruct 2017; 27: 32-41. DOI: 10.1016/j.photonics.2017.09.001.
  63. Degtyarev SA, Volotovsky SG, Khonina SN. Sublinearly chirped metalenses for forming abruptly autofocusing cylindrically polarized beams. J Opt Soc Am B 2018; 35(8): 1963-1969. DOI: 10.1364/JOSAB.35.001963.
  64. Khonina SN, Degtyarev SA, Ustinov AV, Porfirev AP. Metalenses for the generation of vector Lissajous beams with a complex Poynting vector density. Opt Express 2021; 29(12): 18651-18662. DOI: 10.1364/OE.428453.
  65. Khonina SN, Tukmakov KN, Degtyarev SA, Reshetnikov AS, Pavelyev VS, Knyazev BA, Choporova YuYu. Design, fabrication and investigation of a subwavelength axicon for terahertz beam polarization transforming. Computer Optics 2019; 43(5): 756-764. DOI: 10.18287/2412-6179-2019-43-5-756-764.
  66. Pavelyev VS, Khonina SN, Degtyarev SA, Tukmakov KN, Reshetnikov AS, Gerasimov VV, Osintseva ND, Knyazev BA. Subwavelength silicon terahertz optics for generation of coherent beams with pre-given polarization state. 46th Int Conf on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) 2021: 1-1. DOI: 10.1109/IRMMW-THz50926.2021.9567286.
  67. Machavariani G, Lumer Y, Moshe I, Meir A, Jackel S. Efficient extracavity generation of radially and azimuthally polarized beams. Opt Lett 2007; 32(11): 1468-1470. DOI: 10.1364/OL.32.001468.
  68. Alferov SV, Karpeev SV, Khonina SN, Moiseev OYu. Experimental study of focusing of inhomogeneously polarized beams generated using sector polarizing plates. Computer Optics 2014; 38(1): 57-64. DOI: 10.18287/0134-2452-2014-38-1-57-64.
  69. Karpeev SV, Podlipnov VV, Khonina SN, Paranin VD, Reshetnikov AS. A four-sector polarization converter integrated in a calcite crystal. Computer Optics 2018; 42(3): 401-407. DOI: 10.18287/2412-6179-2018-42-3-401-407.
  70. Man Zh, Min Ch, Zhang Y, Shen Z, Yuan X-C. Arbitrary vector beams with selective polarization states patterned by tailored polarizing films. Laser Phys 2013; 23(10): 105001. DOI: 10.1088/1054-660X/23/10/105001.
  71. Khonina SN, Karpeev SV, Porfirev AP. Sector sandwich structure: an easy-to-manufacture way towards complex vector beam generation. Opt Express 2020; 28(19): 27628-27643. DOI: 10.1364/OE.398435.
  72. Karpeev S, Paranin V, Khonina S. Generation of a controlled double-ring-shaped radially polarized spiral laser beam using a combination of a binary axicon with an interference polarizer. J Opt 2017; 19(5): 055701. DOI: 10.1088/2040-8986/aa640c.
  73. Paranin VD, Karpeev SV, Khonina SN. Generation of radially polarized beams based on the refractive elements with interference polarizing coatings. Computer Optics 2015; 39(4): 492-499. DOI: 10.18287/0134-2452-2015-39-4-492-499.
  74. Stafeev SS, Nalimov AG, Kotlyar MV, Gibson D, Song S, O’Faolain L, Kotlyar VV. Microlens-aided focusing of linearly and azimuthally polarized laser light. Opt Express 2016; 24(26): 29800-29813. DOI: 10.1364/OE.24.029800.
  75. Kharitonov SI, Khonina SN. Conversion of a conical wave with circular polarization into a vortex cylindrically polarized beam in a metal waveguide. Computer Optics 2018; 42(2): 197-211. DOI: 10.18287/2412-6179-2018-42-2-197-211.
  76. Moreno I, Davis JA, Ruiz I, Cottrell DM. Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating. Opt Express 2010; 18: 7173-7183.
  77. Fu S, Zhang S, Wang T, Gao C. Rectilinear lattices of polarization vortices with various spatial polarization distributions. Opt Express 2016; 24(16): 18486-18491.
  78. Moreno I, Davis JA, Badham K, Sánchez-López MM, Holland JE, Cottrell DM. Vector beam polarization state spectrum analyzer. Sci Rep 2017; 7(1): 2216.
  79. Khonina SN, Porfirev AP, Karpeev SV. Recognition of polarization and phase states of light based on the interaction of non-uniformly polarized laser beams with singular phase structures. Opt Express 2019; 27(13): 18484-18492. DOI: 10.1364/OE.27.018484.
  80. Pachava S, Dharmavarapu R, Vijayakumar A, Jayakumar S, Manthalkar A, Dixit A, Viswanathan NK, Srinivasan B, Bhattacharya S. Generation and decomposition of scalar and vector modes carrying orbital angular momentum: A review. Opt Eng 2019; 59(4): 041205.
  81. Wang Z, Zhang N, Yuan X-C. High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication. Opt Express 2011; 19: 482-492.
  82. Qiu H, Yu H, Hu T, Jiang G, Shao H, Yu P, Yang J, Jiang X. Silicon mode multi/demultiplexer based on multimode grating-assisted coupler. Opt Express 2013; 21(15): 17904-17911.
  83. Kazanskiy NL, Khonina SN, Karpeev SV, Porfirev AP. Diffractive optical elements for multiplexing structured laser beams. Quantum Electron 2020; 50(7): 629-635. DOI: 10.1070/QEL17276.
  84. Khonina SN, Porfirev AP, Volotovskiy SG, Ustinov AV, Fomchenkov SA, Pavelyev VS, Schröter S, Duparré M. Generation of multiple vector optical bottle beams. Photonics 2021; 8(6): 218. DOI: 10.3390/photonics8060218.
  85. Zhao Y, Edgar JS, Jeffries GDM, McGloin D, Chiu DT. Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys Rev Lett 2007; 99(7): 073901.
  86. Zhu J, Chen Y, Zhang Y, Cai X, Yu S. Spin and orbital angular momentum and their conversion in cylindrical vector vortices. Opt Lett 2014; 39(15): 4435-4438.
  87. Bliokh KY, Rodriguez-Fortuno F, Nori F, Zayats AV. Spin-orbit interactions of light. Nat Photon 2015; 9(12): 796-808.
  88. Khonina SN, Golub I. Generation of an optical ball bearing facilitated by coupling between handedness of polarization of light and helicity of its phase. J Opt Soc Am B 2019; 36(8): 2087-2091. DOI: 10.1364/JOSAB.36.002087.
  89. Alferov SV, Khonina SN, Karpeev SV. Study of polarization properties of fiber-optics probes with use of a binary phase plate. J Opt Soc Am A 2014; 31(4): 802-807. DOI: 10.1364/JOSAA.31.000802.
  90. Berezny AE, Karpeev SV, Uspleniev GV. Computer-generated holographic optical elements produced by photolithography. Opt Lasers Eng 1991; 15(5): 331-340. DOI: 10.1016/0143-8166(91)90020-T.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20