(46-6) 15 * << * >> * Русский * English * Содержание * Все выпуски
Обнаружение коронавирусной инфекции COVID-19 на основе анализа рентгеновских снимков грудной клетки методами глубокого обучения
Е.Ю. Щетинин 1
1 Финансовый Университет при Правительстве РФ,
111123, Россия, г. Москва, ул. Щербаковская, д.38
PDF, 1046 kB
DOI: 10.18287/2412-6179-CO-1077
Страницы: 963-970.
Аннотация:
Раннее выявление пациентов с коронавирусной инфекцией COVID-19 имеет важное значение для обеспечения их адекватного лечения и снижения нагрузки на систему здравоохранения. Эффективным методом обнаружения COVID-19 является компьютерный анализ рентгеновских снимков грудной клетки методами глубокого обучения. В работе предложена методология, состоящая из этапов стандартизации размеров рентгеновских снимков к (224, 224), их классификации с использованием глубоких сверточных нейронных сетей Xception, InceptionResNetV2, MobileNetV2, DenseNet121, ResNet50 и VGG16, предварительно обученных на наборе данных ImageNet, а затем настроенных на наборе рентгеновских снимков грудной клетки. Результаты компьютерных экспериментов показали, что модель VGG16 с тонкой настройкой параметров продемонстрировала максимальную эффективность в классификации COVID-19 с показателями точности (accuracy) 99,09 %, полнота (recall) 99,483 %, прецизионность (precision) 99,08 %.
Ключевые слова:
COVID-19, рентгеновские снимки грудной клетки, глубокое обучение, сверточные нейронные сети.
Цитирование:
Щетинин, Е.Ю. Обнаружение коронавирусной инфекции COVID-19 на основе анализа рентгеновских снимков грудной клетки методами глубокого обучения / Е.Ю. Щетинин // Компьютерная оптика. – 2022. – Т. 46, № 6. – С. 963-970. – DOI: 10.18287/2412-6179-CO-1077.
Citation:
Shchetinin E.Y. Detection of COVID-19 coronavirus infection in chest X-ray images with deep learning methods. Computer Optics 2022; 46(6): 963-970. DOI: 10.18287/2412-6179-CO-1077.
References:
- World Health Organization. November 25, 2021. Source: <https://www.who.int/emergencies/diseases/novel-coronavirus-2019>.
- Sohrabi С, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg 2020; 76: 71-76. DOI: 10.1016/j.ijsu.2020.02.034.
- Zhang R, Tie X, Qi Z, Bevins NB, Zhang C, Griner D, Song TK, Nadig JD, Schiebler ML, Garrett JW, Li K, Reeder SB, Chen G-H. Diagnosis of coronavirus disease 2019 pneumonia by using chest radiography: Value of artificial intelligence. Radiology 2021; 298(2): E88-E97. DOI: 10.1148/radiol.2020202944.
- Kim M, Yan C, Yang D, Wang Q, Ma J, Wu G. Deep learning in biomedical image analysis. In Book: Biomedical information technology. 2nd ed. Chap 8. London: Academic Press; 2020: 239-263. DOI: 10.1016/B978-0-12-816034-3.00008-0.
- Mei X, Lee HC, Diao K. Artificial intelligence–enabled rapid diagnosis of patients with COVID-19. Nat Med 2020; 26: 1224-1228. DOI: 10.1038/s41591-020-0931-3.
- Kong W, Agarwal PP. Chest imaging appearance of COVID-19 infection. Radiol Cardiothorac Imaging 2020; 2(1): e200028. DOI: 10.1148/ryct.2020200028.
- Simonyan K, Zisserman AJ. Very deep convolutional networks for large-scale image recognition. 2014. arXiv Preprint. Source: <https://arxiv.org/abs/1409.1556>. DOI: 10.48550/arXiv.1409.1556.
- He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 2016. arXiv Preprint. Source: <https://arxiv.org/abs/1512.03385>. DOI: 10.48550/arXiv.1512.03385.
- Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision. 2015. arXiv Preprint. Source: <https://arxiv.org/abs/1512.00567>. DOI: 10.48550/arXiv.1512.00567.
- Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. MobileNetV2: Inverted residuals and linear bottle. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018: 4510-4520. DOI: 10.48550/arXiv.1801.04381.
- Chowdhury M, Rahman T, Khandakar A, Mazhar R, Kadir MA, Mahbub ZB, Islam KR, Khan MS. Can AI help in screening viral and COVID-19 pneumonia? IEEE Access 2020; 8: 132665-132676.
- Ismael AM, Sengur A. Deep learning approaches for COVID-19 detection based on chest X-ray images. Expert Syst Appl 2021; 164: 114054. DOI: 10.1016/j.eswa.2020.114054.
- Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Acharya UR. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput Biol Med 2020; 121: 103792. DOI: 10.1016/j.compbiomed.2020.103792.
- Nafees MT, Rizwan M, Khan MI, Farhan M. A novel convolutional neural network for COVID-19 detection and classification using chest X-Ray images. 2021. medRxiv Preprint. Source: áhttps://www.medrxiv.org/content/10.1101/2021.08.11.21261946v1ñ. DOI: 10.1101/2021.08.11.21261946.
- Nasiri H, Hasani S. Automated detection of COVID-19 cases from chest X-ray images using deep neural network and XGBoost. arXiv Preprint. 2021. Source: áhttps://arxiv.org/abs/2109.02428ñ. DOI: 10.48550/arXiv.2109.02428.
- Katsamenis I, Protopapadakis E, Voulodimos A. Transfer learning for COVID-19 pneumonia detection and classification in chest X-ray images. medRxiv Preprint. 2020. Source: áhttps://www.medrxiv.org/content/10.1101/2020.12.14.20248158v1ñ. DOI: 10.1101/2020.12.14.20248158.
- Shazia A, Xuan TZ, Chuah JH, Usman J, Qian P, Lai KW. A comparative study of multiple neural network for detection of COVID-19 on chest X-ray. EURASIP J Adv Signal Process 2021; 2021: 50. DOI: 10.1186/s13634-021-00755-1.
- Narin A, Kaya C, Pamuk Z. Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. Pattern Anal Appl 2021; 24: 1207-1220. DOI: 10.1007/s10044-021-00984-y.
- Nasiri H, Alavi SA. A novel framework based on deep learning and ANOVA feature selection method for diagnosis of COVID-19 cases from chest X-ray Images. medRxiv Preprint. October 14, 2021. Source: áhttps://www.medrxiv.org/content/10.1101/2021.10.10.21264809v1ñ. DOI: 10.1101/2021.10.10.21264809.
- Shenoy V, Malik SB. CovXR: Automated detection of COVID-19 pneumonia in Chest X-Rays through machine learning. arXiv Preprint. 2021. Source: <https://arxiv.org/abs/2110.06398>. DOI: 10.48550/arXiv.2110.06398.
- Ilyas M, Rehman H, Nait-ali A. Detection of Covid-19 from chest X-ray images using artificial intelligence: an early review. arXiv Preprint. 2020. Source: <https://arxiv.org/abs/2004.05436v1>. DOI: 10.48550/arXiv.2004.05436.
- Deng J, Dong W, Socher R, Li L, Li K, Li F-F. ImageNet: A large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition 2009: 248-255.
- Chollet F. Deep learning with Python. Maning; 2017. ISBN: 978-1-61729-443-3.
- Best N, Ott J, Linstead EJ. Exploring the efficiency of transfer learning in mining image-based software artifacts. J Big Data 2020; 7(1): 2-10. DOI: 10.1186/s40537-020-00335-4.
- Shchetinin EYu, Sevastyanov LA, Kulyabov DS, Demidova AV, Ayrjan EA. Deep neural networks for emotion recognition. Lecture Notes in Computer Science 2020; 12563 LNCS: 365-379. DOI: 10.1007/978-3-030-66471-8_28.
- Shchetinin EYu, Sevastianov LA, Demidova AV, Glushkova AG. Cardiac arrhythmia disorders detection with deep learning models. In Book: Vishnevskiy VM, Samouylov KE, Kozyrev DV, eds. Distributed computer and communication networks. Springer Nature Switzerland AG; 2022: 371-384. DOI: 10.1007/978-3-030-97110-6_29.
- Géron A. Hands-on machine learning with scikit-learn, keras, and tensorflow: Concepts, tools, and techniques to build intelligent systems, 2nd ed. O’Reilly Media; 2019. ISBN: 978-1-4920-3264-9.
- Patel P. Chest X-ray (COVID-19 & Pneumonia).2020. Source: <https://www.kaggle.com/prashant268/chest-xray-covid19-pneumonia>.
- Rahman T, et al. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Comput Biol Med 2021; 132: 104319. DOI: 10.1016/j.compbiomed.2021.104319.
- Sokolova M, Lapalme G. A systematic analysis of performance measures of classification tasks. Inf Process Manag 2009; 45(4): 427-437. DOI: 10.1016/j.ipm.2009.03.002.
- Thrun S, Pratt L. Learning to learn. New York, NY: Springer; 2012. ISBN: 978-0-7923-8047-4.
- Lin Y, Dai X, Li L, Wang X, Wang F. The new frontier of AI research: generative adversarial networks. Acta Autom Sin 2018; 44: 775-792. DOI: 10.16383/j.aas.2018.y000002.
© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20