(46-6) 15 * << * >> * Russian * English * Content * All Issues

Detection of COVID-19 coronavirus infection in chest X-ray images with deep learning methods
E.Yu. Shchetinin 1

Financial University under the Government of the Russian Federation,
11123, Moscow, Russian Federation, Shcherbakovskaya, 38

 PDF, 1046 kB

DOI: 10.18287/2412-6179-CO-1077

Pages: 963-970.

Full text of article: Russian language.

Abstract:
Early detection of patients with COVID-19 coronavirus infection is essential in ensuring an adequate treatment and reducing the burden on the health care system. An effective method of detecting COVID-19 is computer analysis of chest X-rays. The paper proposes a methodology that consists of stages of formatting X-ray images to the size (224, 224) size, their classification using deep convolutional neural networks, such as Xception, InceptionResnetV2, MobileNetV2, DenseNet121, ResNet50 and VGG16, which are pre-trained on the ImageNet dataset and then fine-tuned on a set of chest X-rays. The results of computer experiments showed that the VGG16 model with fine-tuning of parameters demonstrated the best performance in the COVID-19 classification with accuracy = 99.09 %, recall = 99.483 %, precision = 99.08 % and f1_score = 99.281 %.

Keywords:
COVID-19, chest X-rays, deep learning, finetuning, convolutional neural networks.

Citation:
Shchetinin EY. Detection of COVID-19 coronavirus infection in chest X-ray images with deep learning methods. Computer Optics 2022; 46(6): 963-970. DOI: 10.18287/2412-6179-CO-1077.

References:

  1. World Health Organization. November 25, 2021. Source: <https://www.who.int/emergencies/diseases/novel-coronavirus-2019>.
  2. Sohrabi С, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg 2020; 76: 71-76. DOI: 10.1016/j.ijsu.2020.02.034.
  3. Zhang R, Tie X, Qi Z, Bevins NB, Zhang C, Griner D, Song TK, Nadig JD, Schiebler ML, Garrett JW, Li K, Reeder SB, Chen G-H. Diagnosis of coronavirus disease 2019 pneumonia by using chest radiography: Value of artificial intelligence. Radiology 2021; 298(2): E88-E97. DOI: 10.1148/radiol.2020202944.
  4. Kim M, Yan C, Yang D, Wang Q, Ma J, Wu G. Deep learning in biomedical image analysis. In Book: Biomedical information technology. 2nd ed. Chap 8. London: Academic Press; 2020: 239-263. DOI: 10.1016/B978-0-12-816034-3.00008-0.
  5. Mei X, Lee HC, Diao K. Artificial intelligence–enabled rapid diagnosis of patients with COVID-19. Nat Med 2020; 26: 1224-1228. DOI: 10.1038/s41591-020-0931-3.
  6. Kong W, Agarwal PP. Chest imaging appearance of COVID-19 infection. Radiol Cardiothorac Imaging 2020; 2(1): e200028. DOI: 10.1148/ryct.2020200028.
  7. Simonyan K, Zisserman AJ. Very deep convolutional networks for large-scale image recognition. 2014. arXiv Preprint. Source: <https://arxiv.org/abs/1409.1556>. DOI: 10.48550/arXiv.1409.1556.
  8. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 2016. arXiv Preprint. Source: <https://arxiv.org/abs/1512.03385>. DOI: 10.48550/arXiv.1512.03385.
  9. Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision. 2015. arXiv Preprint. Source: <https://arxiv.org/abs/1512.00567>. DOI: 10.48550/arXiv.1512.00567.
  10. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. MobileNetV2: Inverted residuals and linear bottle. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018: 4510-4520. DOI: 10.48550/arXiv.1801.04381.
  11. Chowdhury M, Rahman T, Khandakar A, Mazhar R, Kadir MA, Mahbub ZB, Islam KR, Khan MS. Can AI help in screening viral and COVID-19 pneumonia? IEEE Access 2020; 8: 132665-132676.
  12. Ismael AM, Sengur A. Deep learning approaches for COVID-19 detection based on chest X-ray images. Expert Syst Appl 2021; 164: 114054. DOI: 10.1016/j.eswa.2020.114054.
  13. Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Acharya UR. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput Biol Med 2020; 121: 103792. DOI: 10.1016/j.compbiomed.2020.103792.
  14. Nafees MT, Rizwan M, Khan MI, Farhan M. A novel convolutional neural network for COVID-19 detection and classification using chest X-Ray images. 2021. medRxiv Preprint. Source:     áhttps://www.medrxiv.org/content/10.1101/2021.08.11.21261946v1ñ. DOI: 10.1101/2021.08.11.21261946.
  15. Nasiri H, Hasani S. Automated detection of COVID-19 cases from chest X-ray images using deep neural network and XGBoost. arXiv Preprint. 2021. Source: áhttps://arxiv.org/abs/2109.02428ñ. DOI: 10.48550/arXiv.2109.02428.
  16. Katsamenis I, Protopapadakis E, Voulodimos A. Transfer learning for COVID-19 pneumonia detection and classification in chest X-ray images. medRxiv Preprint. 2020. Source: áhttps://www.medrxiv.org/content/10.1101/2020.12.14.20248158v1ñ. DOI: 10.1101/2020.12.14.20248158.
  17. Shazia A, Xuan TZ, Chuah JH, Usman J, Qian P, Lai KW. A comparative study of multiple neural network for detection of COVID-19 on chest X-ray. EURASIP J Adv Signal Process 2021; 2021: 50. DOI: 10.1186/s13634-021-00755-1.
  18. Narin A, Kaya C, Pamuk Z. Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. Pattern Anal Appl 2021; 24: 1207-1220. DOI: 10.1007/s10044-021-00984-y.
  19. Nasiri H, Alavi SA. A novel framework based on deep learning and ANOVA feature selection method for diagnosis of COVID-19 cases from chest X-ray Images. medRxiv Preprint. October 14, 2021. Source: áhttps://www.medrxiv.org/content/10.1101/2021.10.10.21264809v1ñ. DOI: 10.1101/2021.10.10.21264809.
  20. Shenoy V, Malik SB. CovXR: Automated detection of COVID-19 pneumonia in Chest X-Rays through machine learning. arXiv Preprint. 2021. Source: <https://arxiv.org/abs/2110.06398>. DOI: 10.48550/arXiv.2110.06398.
  21. Ilyas M, Rehman H, Nait-ali A. Detection of Covid-19 from chest X-ray images using artificial intelligence: an early review. arXiv Preprint. 2020. Source: <https://arxiv.org/abs/2004.05436v1>. DOI: 10.48550/arXiv.2004.05436.
  22. Deng J, Dong W, Socher R, Li L, Li K, Li F-F. ImageNet: A large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition 2009: 248-255.
  23. Chollet F. Deep learning with Python. Maning; 2017. ISBN: 978-1-61729-443-3.
  24. Best N, Ott J, Linstead EJ. Exploring the efficiency of transfer learning in mining image-based software artifacts. J Big Data 2020; 7(1): 2-10. DOI: 10.1186/s40537-020-00335-4.
  25. Shchetinin EYu, Sevastyanov LA, Kulyabov DS, Demidova AV, Ayrjan EA. Deep neural networks for emotion recognition. Lecture Notes in Computer Science 2020; 12563 LNCS: 365-379. DOI: 10.1007/978-3-030-66471-8_28.
  26. Shchetinin EYu, Sevastianov LA, Demidova AV, Glushkova AG. Cardiac arrhythmia disorders detection with deep learning models. In Book: Vishnevskiy VM, Samouylov KE, Kozyrev DV, eds. Distributed computer and communication networks. Springer Nature Switzerland AG; 2022: 371-384. DOI: 10.1007/978-3-030-97110-6_29.
  27. Géron A. Hands-on machine learning with scikit-learn, keras, and tensorflow: Concepts, tools, and techniques to build intelligent systems, 2nd ed. O’Reilly Media; 2019. ISBN: 978-1-4920-3264-9.
  28. Patel P. Chest X-ray (COVID-19 & Pneumonia).2020. Source: <https://www.kaggle.com/prashant268/chest-xray-covid19-pneumonia>.
  29. Rahman T, et al. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Comput Biol Med 2021; 132: 104319. DOI: 10.1016/j.compbiomed.2021.104319.
  30. Sokolova M, Lapalme G. A systematic analysis of performance measures of classification tasks. Inf Process Manag 2009; 45(4): 427-437. DOI: 10.1016/j.ipm.2009.03.002.
  31. Thrun S, Pratt L. Learning to learn. New York, NY: Springer; 2012. ISBN: 978-0-7923-8047-4.
  32. Lin Y, Dai X, Li L, Wang X, Wang F. The new frontier of AI research: generative adversarial networks. Acta Autom Sin 2018; 44: 775-792. DOI: 10.16383/j.aas.2018.y000002.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20