(47-1) 03 * << * >> * Русский * English * Содержание * Все выпуски
Пространственные и временные характеристики четырехволнового преобразователя излучения в параболическом волноводе с резонансной нелинейностью
Е.В. Воробьева 1, В.В. Ивахник 1, Д.Р. Капизов 1
1 Самарский национальный исследовательский университет имени академика С.П. Королёва,
443086, Россия, г. Самара, Московское шоссе, д. 34
PDF, 804 kB
DOI: 10.18287/2412-6179-CO-1199
Страницы: 27-35.
Аннотация:
С использованием функции временного отклика, функции размытия точки проанализированы пространственные и временные характеристики вырожденного четырехволнового преобразователя в многомодовом волноводе с резонансной нелинейностью. Для четырехволнового преобразователя при условии одномодовых с равными номерами мод волнами накачки получены зависимости ширины временного отклика от номера моды объектной волны, интенсивности первой волны накачки, длины волновода. Показано, что наибольший вклад в амплитуду объектной волны обусловлен модой волновода, номер которой совпадает с номерами мод одномодовых волн накачки. Для стационарного режима учет пространственной структуры гауссовой волны накачки приводит с уменьшением ширины пучка накачки к монотонному уменьшению с последующим выходом на постоянное значение полуширины модуля функции размытия точки. При одномодовых волнах накачки с равными номерами мод с увеличением номера моды волн накачки наблюдается перераспределение энергии, сосредоточенной в побочных максимумах изображения точечного сигнала, улучшение качества обращения волнового фронта.
Ключевые слова:
четырехволновой преобразователь излучения, параболический волновод, резонансная нелинейность, функция размытия точки, временной отклик.
Благодарности
Xxxx.
Цитирование:
Воробьева, Е.В. Пространственные и временные характеристики четырехволнового преобразователя излучения в параболическом волноводе с резонансной нелинейностью / Е.В. Воробьева, В.В. Ивахник, Д.Р. Капизов // Компьютерная оптика. – 2023. – Т. 47, № 1. – С. 27-35. – DOI: 10.18287/2412-6179-CO-1199.
Citation:
Vorobeva EV, Ivakhnik VV, Kapizov DR. Spatial and time characteristics of a four-wave radiation converter in a parabolic waveguide with resonant nonlinearity. Computer Optics 2023; 47(1): 27-35. DOI: 10.18287/2412-6179-CO-1199.
References:
- Turitsyn SK, Bednyakova AE, Fedoruk MP, Papernyi SB, Clements WRL. Inverse four-wave mixing and self-parametric amplification in optical fibre. Nat Photonics 2015; 9: 608-664. DOI: 10.1038/NPHOTON.2015.150.
- Weng Y, He X, Wang J, Pan Z. All-optical ultrafast wavelength and mode converter based on intermodal four-wave mixing in few-mode fibers. Opt Commun 2015; 348: 7-12. DOI: 10.1016/j.optcom.2015.03.018.
- Nazemosadat E, Pourbeyram H, Mafi A. Phase matching for spontaneous frequency conversion via four-wave mixing in graded–index multimode optical fibers. J Opt Soc Am B 2016; 33(2): 144-150. DOI: 10.1364/JOSAB.33.000144.
- Anjum OF, Guasoni M, Horak P, Jung Y, Petropoulos P, Richardson DJ, Parmigiani F. Polarization insensitive four wave mixing based wavelength conversion in few-mode optical fibers. J Lightw Technol 2018; 36(17): 3678-3683. DOI: 10.1109/JLT.2018.2834148.
- Zhang H, Bigot-Astruc M, Bigot L, Sillard P, Fatome J. Multiple modal and wavelength conversion process of a 10-Gbit/s signal in a 6-LP-mode fiber. Opt Express 2019; 27(11): 15413-15425. DOI: 10.1364/OE.27.015413.
- Gupta R, Kaler RS. Nonlinear Kerr and intermodal four-wave mixing effect in mode-division multiplexed multimode fiber link. Opt Eng 2019; 58(3): 036108. DOI: 10.1117/1.OE.58.3.036108.
- Zhang H, Bigot-Astruc M, Sillard P, Fatome J. Spatially multiplexed picosecond pulse-train generation in a 6 LP mode fiber based on multiple four-wave mixings. Appl Opt 2019; 58(31): 8570-8576. DOI: 10.1364/AO.58.008570.
- Yuan J, Kang Z, Li F, Zhang X, Sang X, Zhou G, Wu Q, Yan B, Wang K, Yu C, Tam HY, Wai PKA. LDemonstration of intermodal four-wave mixing by femtosecond pulses centered at 1550 nm in an air-silica photonic crystal fiber. J Lightw Technol 2017; 35(12): 2385-2390. DOI: 10.1109/JLT.2017.2681183.
- Yulin AV, Skryabin DV, Russell PSJ. Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion. Opt Lett 2004; 29(20): 2411-2413. DOI: 10.1364/OL.29.002411.
- Esmaeelpour M, Essiambre RJ, Fontaine NK, Ryf R, Toulouse J, Sun Y, Lingle R. Power fluctuations of intermodal four-wave mixing in few-mode fibers. J Lightw Technol 2017; 35(12): 2429-2435. DOI: 10.1109/JLT.2017.2660459.
- Mondal P, Bhatia N, Mishra V, Haldar R, Varshney SK. Cascaded Raman and intermodal four-wave mixing in conventional non-zero dispersion-shifted fiber for versatile ultra-broadband continuum generation. J Lightw Technol 2018; 36(12): 2351-2357. DOI: 10.1109/JLT.2018.2809914.
- Guasoni M, Parmigiani F, Horak P, Fatome J, Richardson DJ. Intermodal four-wave mixing and parametric amplification in kilometer-long multimode fibers. J Lightw Technol 2017; 35(24): 5296-5305. DOI: 10.1109/JLT.2017.2767103.
- Trägårdh J, Pikálek T, Stibůrek M, Simpson S, Cifuentes A, Čižmár T. CARS microscopy through a multimode fiber probe with reduced four-wave mixing background. In: Biophotonics congress: Biomedical optics 2022 (Translational, Microscopy, OCT, OTS, BRAIN), Technical digest series (Optica Publishing Group, 2022) 2022: JM3A.43. DOI: 10.1364/TRANSLATIONAL.2022.JM3A.43.
- Voronin ES, Petnikova VM, Shuvalov VV. Use of degenerate parametric processes for wave front correction (review). Soviet Journal of Quantum Electronics 1981; 11(5): 551-561. DOI: 10.1070/QE1981v011n05ABEH006899.
- Barashkov MS, Matveev IN, Petnikova VM, Umnov AF, Ustinov ND, Shuvalov VV. Compensation of phase distortions in a single-transit wavefront-reversal system with a degenerate four-photon interaction. Soviet Journal of Quantum Electronics 1982; 12(11): 1524-1525. DOI: 10.1070/2FQE1982v012n11ABEH006186.
- Lukin VP. Adaptive optics in the formation of optical beams and images. Physics-Uspekhi 2014; 57(6): 556-592. DOI: 10.3367/UFNe.0184.201406b.0599.
- Lukin VP, Kanev FY, Kulagin OV. Possibilities of joint application of adaptive optics technique and nonlinear optical phase conjugation to compensate for turbulent distortions. Quantum Electron 2016; 46(5): 481-484. DOI: 10.1070/QEL15874.
- Zhou P, Fan D. Terahertz-wave generation by surface-emitted four-wave mixing in optical fiber. Chin Opt Lett 2011; 9(5): 051902. DOI: 10.3788/COL201109.051902.
- Pourbeyram H, Nazemosadat E, Mafi A. Detailed analysis of amplified spontaneous four-wave mixing in a multimode fiber. Frontiers in Optics 2015: FW5F.3. DOI: 10.1364/FIO.2015.FW5F.3.
- Chuprina IN, An PP, Zubkova EG, Kovalyuk VV, Kalachev AA, Goltsman GN. Optimisation of spontaneous four-wave mixing in a ring microcavity. Quantum Electron 2017; 47(10): 887-891. DOI: 10.1070/QEL16511.
- Lera G, Nieto-Vesperinas M. Phase conjugation by four-wave mixing of statistical beams. Phys Rev A 1990; 41(11): 6400-6405. DOI: 10.1103/PhysRevA.41.6400.
- Erokhin AI, Kovalev VI, Miheev PA, Faizullov FS. Quality of wavefront reversal of multifrequency radiation by four-wave interaction. Soviet Journal of Quantum Electronics 1985; 15(1): 116-119. DOI: 10.1070/QE1985v015n01ABEH005879.
- Ben' VN, Bondarenko SV, Ivakin EV, Rubanov AS. Influence of the angular selectivity on imaging properties of a four-wave wavefront-reversing mirror. Soviet Journal of Quantum Electronics 1987; 17(2): 239-241. DOI: 10.1070/QE1987v017n02ABEH007248.
- Arutunyan VM, Agadjanyan SA, Muradyan A, Oganyan AA, Papazyan TA. Efficiency and quality investigation of the phase conjugation of degenerate four-wave parametric mixing of picosecond pulses in a resonance dye. Opt Commun 1984; 50(3): 123-126. DOI: 10.1016/0030-4018(84)90148-2.
- Il'inykh PN, Kovalev VI, Suvorov MB. Spatial characteristics of a beam and quality of phase conjugation of radiation from a CO2 laser with InAs in its resonator. Soviet Journal of Quantum Electronics 1990; 20(6): 609-612. DOI: 10.1070/QE1990v020n06ABEH006623.
- Ivleva LI, Korol'kov SA, Lyubomudrov OV, Mamaev AV, Polozkova NM, Shkunov VV. Efficiency and quality of four-wave phase conjugation of a signal with a time-dependent spatial structure. Quantum Electron 1995; 25(3), 247-251. DOI: 10.1070/QE1995v025n03ABEH000336.
- Ill'inskii YA, Petnikova VM. Influence of linear filtering on wavefront reconstruction. Soviet Journal of Quantum Electronics 1980; 10(2): 250-252. DOI: 10.1070/QE1980v010n02ABEH009960.
- Kirsanov AV, Yarovoi VV. Phase conjugation of a speckle-inhomogeneous beam by an Nd glass oscillator based on four-wave mixing with feedback. Quantum Electron 1997; 27(3): 239-244. DOI: 10.1070/QE1997v027n03ABEH000910.
- Betin AA, Ergakov KV, Mitropol'skii OV. Reflection of speckle-inhomogeneous CO2 laser radiation under four-wave interaction conditions with feedback. Quantum Electron 1994; 24(1): 59-62. DOI: 10.1070/QE1994v024n01ABEH000020.
- Dmitriev VG. Nonlinear optics and wavefront reversal [In Russian]. Moscow: "Fizmatlit" Publisher; 2003. ISBN: 5-9221-0080-7.
- Ivakhnik VV. Wavefront reversal at four-wave interactions [In Russian]. Samara: Samara State University; 2010. ISBN: 978-5-86465-471-2.
- Akimov AA, Vorobeva EV, Ivakhnik VV. The time response of a four-wave converter of radiation on thermal nonlinearity [In Russian]. Computer Optics 2011; 35(4): 462-466.
- Ivakhnik VV, Savelyev MV. Four-wave mixing in a transparent medium based on electrostriction and Dufour effect at large reflectance. Physics Procedia 2015; 73: 26-32. doi: 10.1016/j.phpro.2015.09.117.
- Akimov AA, Ivakhnik VV, Nikonov VI. Four-wave interaction on resonance and thermal nonlinearities in a scheme with concurrent pump wavesat high conversion coefficients. Radiophysics and Quantum Electronics 2015; 57: 672-679. doi: 10.1007/s11141-015-9553-x.
- Vorobieva EV, Ivakhnik VV, Luneva MV. Time dependence of the point spread function of a four-wave converter in a waveguide with thermal nonlinearity [In Russian]. Vestnik of Samara University, Natural Science Series 2014; 10(121): 130-139. DOI: 10.18287/2541-7525-2014-20-10-130-139.
- Ivakhnik VV, Kapizov DR, Nikonov VI. Four-wave interaction in a multimode waveguide with a thermal nonlinearity in a circuit with codirectional pumping waves [In Russian]. Physics of Wave Processes and Radio Systems 2020; 23(3): 27-33. DOI: 10.18469/1810-3189.2020.23.3.27-33.
- Vorobyeva EV, Ivakhnik VV, Kaurov AV. The spatial characteristics of a four-wave converter of radiation in multimode waveguide with resonant nonlinearity. Physics of Wave Processes and Radio Systems 2018; 21(1): 4-11.
- Ivakhnik VV, Kapizov DR, Nikonov VI. Quality of wavefront reversal for four-wave interaction in a multimode waveguide with thermal nonlinearity. Computer Optics 2022; 46(1): 48-55. DOI: 10.18287/2412-6179-CO-1011.
- Vinogradova MB, Rudinko OV, Sukhorukov AP. Theory of waves [In Russian]. Moscow: URSS Publisher; 2019. ISBN: 978-5-9710-6283-7.
- Tikhonov EA, Shpak MT. Nonlinear optical phenomena in organic compounds [In Russian]. Kiev: "Naukova Dumka" Publisher; 1984.
- Adams MJ. An introduction to optical waveguide. New York: John Wiley and Sons Ltd; 1981.
- Slyusareva E, Gerasimova M, Plotnikov A, Sizykh A. Spectral study of fluorone dyes sorption on chitosan-based polyelectrolyte complexes. J Colloid Interface Sci 2014; 417: 80-87. DOI: 10.1016/j.jcis.2013.11.016.
- Zel'dovich BY, Pilipetskii NF, Shkunov VV. Wavefront reversal [In Russian]. Moscow: "Nauka" Publisher; 1985.
© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20