(47-1) 03 * << * >> * Russian * English * Content * All Issues
  
Spatial and time characteristics of a four-wave radiation converter in a parabolic waveguide with resonant nonlinearity
  E.V. Vorobeva 1, V.V. Ivakhnik 1, D.R. Kapizov 1
  1 Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34
 PDF, 804 kB
  PDF, 804 kB
DOI: 10.18287/2412-6179-CO-1199
Pages: 27-35.
Full text of article: Russian language.
 
Abstract:
Spatial and temporal  characteristics of a degenerate four-wave converter in a multimode waveguide  with resonant nonlinearity in a scheme with counter-pumping waves are analyzed  using the time response function and the point spread function. For single-mode  pump waves with equal mode numbers, the dependences of the time response width  on the waveguide length, the intensity of the first pump waves, and the mode  number in the mode expansion of the object wave amplitude are obtained for the  four-wave converter. The greatest  contribution to the object wave amplitude is shown to be from the waveguide  mode whose number coincides with the mode number of single-mode pump waves. For  the stationary model, taking into account the spatial structure of the Gaussian  pump wave leads to a monotonous decrease with a decrease in the pump beam  width, followed by a constant value of the PSF module width. With single-mode  pump waves with equal mode numbers, An increase in the mode number of the pump  waves leads to a redistribution of energy concentrated in the side maxima of  the point signal image and improvement in the quality of the wavefront reversal  for a model with single-mode pump waves with equal mode numbers.
Keywords:
four-wave converter of radiation, parabolic waveguide, resonant nonlinearity, point spread function, time response.
Citation:
  Vorobeva EV, Ivakhnik VV, Kapizov DR. Spatial and time characteristics of a four-wave radiation converter in a parabolic waveguide with resonant nonlinearity. Computer Optics 2023; 47(1): 27-35. DOI: 10.18287/2412-6179-CO-1199.
References:
  - Turitsyn SK, Bednyakova  AE, Fedoruk MP, Papernyi SB, Clements WRL. Inverse four-wave mixing and  self-parametric amplification in optical fibre. Nat Photonics 2015; 9: 608-664.  DOI: 10.1038/NPHOTON.2015.150.
- Weng  Y, He X, Wang J, Pan Z. All-optical ultrafast wavelength and mode converter  based on intermodal four-wave mixing in few-mode fibers. Opt Commun 2015;  348: 7-12. DOI: 10.1016/j.optcom.2015.03.018. 
 
- Nazemosadat E, Pourbeyram H, Mafi  A. Phase matching for spontaneous frequency conversion via four-wave mixing in  graded–index multimode optical fibers. J Opt Soc Am B 2016; 33(2): 144-150.  DOI: 10.1364/JOSAB.33.000144.
 
- Anjum OF, Guasoni M, Horak P,  Jung Y, Petropoulos P, Richardson DJ, Parmigiani F. Polarization insensitive  four wave mixing based wavelength conversion in few-mode optical fibers. J  Lightw Technol 2018; 36(17): 3678-3683. DOI: 10.1109/JLT.2018.2834148.
 
- Zhang H, Bigot-Astruc M, Bigot L,  Sillard P, Fatome J. Multiple modal and  wavelength conversion process of a 10-Gbit/s signal in a 6-LP-mode fiber. Opt  Express 2019; 27(11): 15413-15425. DOI:  10.1364/OE.27.015413. 
 
- Gupta R, Kaler RS. Nonlinear Kerr  and intermodal four-wave mixing effect in mode-division multiplexed multimode  fiber link. Opt Eng 2019; 58(3): 036108. DOI:  10.1117/1.OE.58.3.036108.
 
- Zhang H, Bigot-Astruc M, Sillard P, Fatome J. Spatially multiplexed picosecond pulse-train  generation in a 6 LP mode fiber based on multiple four-wave mixings.  Appl Opt 2019; 58(31):     8570-8576. DOI:  10.1364/AO.58.008570. 
 
- Yuan J, Kang Z, Li F, Zhang X,  Sang X, Zhou G, Wu Q, Yan B, Wang K, Yu C, Tam HY, Wai PKA. LDemonstration of intermodal  four-wave mixing by femtosecond pulses centered at 1550 nm in an air-silica  photonic crystal fiber. J Lightw Technol 2017; 35(12): 2385-2390. DOI: 10.1109/JLT.2017.2681183.
 
- Yulin AV, Skryabin DV, Russell  PSJ. Four-wave mixing of linear waves and solitons in fibers with  higher-order dispersion. Opt Lett 2004;  29(20): 2411-2413. DOI:  10.1364/OL.29.002411.
 
- Esmaeelpour M, Essiambre RJ,  Fontaine NK, Ryf R, Toulouse J, Sun Y, Lingle R. Power fluctuations of intermodal  four-wave mixing in few-mode fibers. J  Lightw Technol 2017; 35(12): 2429-2435. DOI: 10.1109/JLT.2017.2660459.
 
- Mondal P, Bhatia N, Mishra V,  Haldar R, Varshney SK. Cascaded Raman and intermodal four-wave mixing in  conventional non-zero dispersion-shifted fiber for versatile ultra-broadband  continuum generation. J Lightw Technol 2018; 36(12): 2351-2357. DOI:  10.1109/JLT.2018.2809914.
 
- Guasoni M, Parmigiani F, Horak  P, Fatome J, Richardson DJ. Intermodal four-wave mixing and parametric amplification  in kilometer-long multimode fibers. J Lightw Technol 2017; 35(24): 5296-5305.  DOI: 10.1109/JLT.2017.2767103.
 
- Trägårdh J, Pikálek T, Stibůrek  M, Simpson S, Cifuentes A, Čižmár T. CARS microscopy through a multimode fiber  probe with reduced four-wave mixing background. In: Biophotonics congress:  Biomedical optics 2022 (Translational, Microscopy, OCT, OTS, BRAIN), Technical  digest series (Optica Publishing Group, 2022) 2022: JM3A.43. DOI:  10.1364/TRANSLATIONAL.2022.JM3A.43.
 
- Voronin ES, Petnikova VM, Shuvalov  VV. Use of degenerate parametric processes for wave front correction (review).  Soviet Journal of Quantum Electronics 1981; 11(5): 551-561. DOI: 10.1070/QE1981v011n05ABEH006899.
 
- Barashkov MS, Matveev IN, Petnikova VM, Umnov AF, Ustinov ND, Shuvalov VV. Compensation of phase distortions in a single-transit  wavefront-reversal system with a degenerate four-photon interaction. Soviet Journal of Quantum  Electronics 1982; 12(11): 1524-1525. DOI: 10.1070/2FQE1982v012n11ABEH006186.
 
- Lukin VP. Adaptive optics in the  formation of optical beams and images. Physics-Uspekhi 2014; 57(6): 556-592. DOI: 10.3367/UFNe.0184.201406b.0599. 
 
- Lukin VP, Kanev  FY, Kulagin OV. Possibilities of joint application of adaptive optics technique  and nonlinear optical phase conjugation to compensate for turbulent distortions.  Quantum Electron 2016; 46(5): 481-484. DOI: 10.1070/QEL15874. 
 
- Zhou P, Fan D. Terahertz-wave  generation by surface-emitted four-wave mixing in optical fiber. Chin Opt Lett  2011; 9(5): 051902. DOI: 10.3788/COL201109.051902.
 
- Pourbeyram H, Nazemosadat E,  Mafi A. Detailed analysis of amplified spontaneous four-wave mixing in a multimode  fiber. Frontiers in Optics 2015: FW5F.3. DOI: 10.1364/FIO.2015.FW5F.3.
 
- Chuprina IN, An PP, Zubkova EG, Kovalyuk VV, Kalachev AA, Goltsman  GN. Optimisation of spontaneous four-wave mixing in a ring microcavity. Quantum  Electron 2017; 47(10): 887-891. DOI: 10.1070/QEL16511. 
 
- Lera G, Nieto-Vesperinas M. Phase  conjugation by four-wave mixing of statistical beams. Phys Rev A 1990; 41(11):  6400-6405. DOI: 10.1103/PhysRevA.41.6400. 
 
- Erokhin AI, Kovalev  VI, Miheev PA, Faizullov FS. Quality of wavefront reversal of multifrequency  radiation by four-wave interaction. Soviet Journal of Quantum Electronics  1985; 15(1): 116-119. DOI: 10.1070/QE1985v015n01ABEH005879. 
 
- Ben' VN, Bondarenko SV, Ivakin EV, Rubanov AS.  Influence of the angular selectivity on imaging properties of a four-wave  wavefront-reversing mirror. Soviet Journal of Quantum Electronics 1987; 17(2): 239-241. DOI:  10.1070/QE1987v017n02ABEH007248.
 
- Arutunyan VM,  Agadjanyan SA, Muradyan A, Oganyan AA, Papazyan TA. Efficiency and quality  investigation of the phase conjugation of degenerate four-wave parametric mixing  of picosecond pulses in a resonance dye. Opt Commun 1984; 50(3): 123-126. DOI: 10.1016/0030-4018(84)90148-2.
 
- Il'inykh PN,  Kovalev VI, Suvorov MB. Spatial characteristics of a beam and quality of phase  conjugation of radiation from a CO2 laser with InAs in its resonator. Soviet  Journal of Quantum Electronics 1990; 20(6): 609-612. DOI:  10.1070/QE1990v020n06ABEH006623.
 
- Ivleva LI,  Korol'kov SA, Lyubomudrov OV, Mamaev AV, Polozkova NM, Shkunov VV. Efficiency  and quality of four-wave phase conjugation of a signal with a time-dependent  spatial structure. Quantum Electron 1995; 25(3), 247-251. DOI:  10.1070/QE1995v025n03ABEH000336.
 
- Ill'inskii YA,  Petnikova VM. Influence of linear filtering on wavefront reconstruction. Soviet  Journal of Quantum Electronics 1980; 10(2): 250-252. DOI:  10.1070/QE1980v010n02ABEH009960.
 
- Kirsanov AV,  Yarovoi VV. Phase conjugation of a speckle-inhomogeneous beam by an Nd glass  oscillator based on four-wave mixing with feedback. Quantum Electron 1997;  27(3): 239-244. DOI: 10.1070/QE1997v027n03ABEH000910.
 
- Betin AA,  Ergakov KV, Mitropol'skii OV. Reflection of speckle-inhomogeneous CO2 laser  radiation under four-wave interaction conditions with feedback. Quantum Electron  1994; 24(1): 59-62. DOI:  10.1070/QE1994v024n01ABEH000020.
 
- Dmitriev VG. Nonlinear  optics and wavefront reversal [In Russian]. Moscow:  "Fizmatlit" Publisher; 2003. ISBN: 5-9221-0080-7. 
 
- Ivakhnik VV. Wavefront reversal  at four-wave interactions [In Russian]. Samara: Samara State   University; 2010. ISBN:  978-5-86465-471-2.
 
- Akimov AA, Vorobeva EV, Ivakhnik VV.  The time response of a four-wave converter of radiation on thermal nonlinearity  [In Russian]. Computer Optics 2011; 35(4): 462-466. 
 
- Ivakhnik VV, Savelyev MV. Four-wave  mixing in a transparent medium based on electrostriction and Dufour effect at  large reflectance. Physics Procedia 2015; 73: 26-32. doi: 10.1016/j.phpro.2015.09.117.
 
- Akimov AA, Ivakhnik VV, Nikonov VI.  Four-wave interaction on resonance and thermal nonlinearities in a scheme with  concurrent pump wavesat high conversion coefficients. Radiophysics and Quantum  Electronics 2015; 57: 672-679. doi:  10.1007/s11141-015-9553-x. 
 
- Vorobieva EV, Ivakhnik VV, Luneva  MV. Time dependence of the point spread function of a four-wave converter in a  waveguide with thermal nonlinearity [In Russian]. Vestnik of Samara University,  Natural Science Series 2014; 10(121): 130-139. DOI:  10.18287/2541-7525-2014-20-10-130-139.
 
- Ivakhnik VV, Kapizov DR, Nikonov VI. Four-wave interaction  in a multimode waveguide with a thermal nonlinearity in a circuit with  codirectional pumping waves [In Russian]. Physics of Wave Processes and  Radio Systems 2020; 23(3): 27-33. DOI: 10.18469/1810-3189.2020.23.3.27-33.
 
- Vorobyeva EV, Ivakhnik VV, Kaurov  AV. The spatial characteristics of a four-wave converter of radiation in  multimode waveguide with resonant nonlinearity. Physics of Wave Processes and  Radio Systems 2018; 21(1): 4-11.
 
- Ivakhnik VV, Kapizov DR, Nikonov VI. Quality of wavefront  reversal for four-wave interaction in a multimode waveguide with thermal  nonlinearity. Computer Optics 2022; 46(1): 48-55. DOI:  10.18287/2412-6179-CO-1011.
 
- Vinogradova MB, Rudinko OV, Sukhorukov AP. Theory of waves [In  Russian]. Moscow:  URSS Publisher; 2019. ISBN: 978-5-9710-6283-7. 
 
- Tikhonov EA, Shpak MT. Nonlinear  optical phenomena in organic compounds [In Russian]. Kiev: "Naukova Dumka" Publisher;  1984.
 
- Adams  MJ. An introduction to optical waveguide. New York: John Wiley and  Sons Ltd; 1981. 
 
- Slyusareva E, Gerasimova M,  Plotnikov A, Sizykh A. Spectral study of fluorone dyes sorption on  chitosan-based polyelectrolyte complexes. J Colloid Interface Sci 2014; 417: 80-87.  DOI: 10.1016/j.jcis.2013.11.016.     
    
- Zel'dovich BY, Pilipetskii NF,  Shkunov VV. Wavefront reversal [In Russian]. Moscow: "Nauka" Publisher; 1985.
      
      
    
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20