(47-3) 17 * << * >> * Русский * English * Содержание * Все выпуски

Формирование признаков на основе методов вычислительной топологии
С.Н. Чуканов 1

Институт математики им. С.Л. Соболева СО РАН, Омский филиал,
644043, Россия, г. Омск, ул. Певцова, д. 13

 PDF, 844 kB

DOI: 10.18287/2412-6179-CO-1190

Страницы: 482-490.

Аннотация:

Использование традиционных методов алгебраической топологии для получения информации о форме объекта связано с проблемой формирования малого количества информации: чисел Бетти и характеристик Эйлера. Центральным инструментом топологического анализа данных является метод персистентной гомологии, который суммирует геометрическую и топологическую информацию в данных с использованием персистентных диаграмм и баркодов. На основе методов персистентной гомологии может быть выполнен анализ топологических данных для получения информации о форме объекта. Построение персистентных баркодов и персистентных диаграмм в вычислительной топологии не позволяет построить гильбертово пространство со скалярным произведением. Возможность применения методов топологического анализа данных основана на отображении персистентных диаграмм в гильбертово пространство; одним из способов такого отображения является метод построения персистентного ландшафта. Его преимущества заключаются в том, что он обратим, поэтому он не теряет никакой информации и имеет свойства персистентности.
     В работе рассматриваются математические модели и функции представления объектов персистентного ландшафта на основе метода персистентной гомологии. Рассмотрены методы преобразования персистентных баркодов и персистентных диаграмм в функции персистентного ландшафта. С функциями персистентного ландшафта ассоциируется ядро персистентного ландшафта, которое формирует отображение в гильбертово пространство со скалярным произведением. Предложена формула для определения расстояния между персистентными ландшафтами, которая позволяет находить расстояния между изображениями объектов.
     Функции персистентного ландшафта отображают персистентные диаграммы в гильбертово пространство. Приведены примеры определения расстояния между изображениями на основании построения функций персистентного ландшафта этих изображений. Рассмотрены представления топологических характеристик в различных моделях вычислительной топологии. Расширены результаты для модулей персистентности с одним параметром на многопараметрические модули персистентности.

Ключевые слова:
распознавание образов, многопараметрический персистентный ландшафт, гильбертово пространство, топологический анализ дан.

Цитирование:
Чуканов, С.Н. Формирование признаков на основе методов вычислительной топологии / С.Н. Чуканов // Компьютерная оптика. – 2023. – Т. 47, № 3. – С. 482-490. – DOI: 10.18287/2412-6179-CO-1190.

Citation:
Chukanov SN. Formation of features based on computational topology methods. Computer Optics 2023; 47(3): 482-490. DOI: 10.18287/2412-6179-CO-1190.

References:

  1. Carlsson G. Topology and data. Bulletin of the American Mathematical Society 2009; 46(2): 255-308. DOI: 10.1090/S0273-0979-09-01249-X.
  2. Edelsbrunner H, Harer JL. Computational topology: an introduction. American Mathematical Society, 2010. ISBN: 978-0-8218-4925-5.
  3. Kusano G, Hiraoka Y, Fukumizu K. Persistence weighted Gaussian kernel for topological data analysis. Int Conf on Machine Learning (PMLR) 2016: 2004-2013.
  4. Hofer C, et al. Deep learning with topological signatures. NIPS'17: Proc 31st Int Conf on Neural Information Processing Systems 2017: 1633-1643.
  5. Hatcher A. Algebraic topology. Cambridge UP; 2005. ISBN: 978-0-521-79160-1.
  6. Zomorodian AJ. Topology for computing. Cambridge University Press; 2005. ISBN: 978-0-521-83666-1.
  7. Bubenik P. The persistence landscape and some of its properties. In Book: Topological data analysis. Cham: Springer; 2020: 97-117. DOI: 10.1007/978-3-030-43408-3_4.
  8. Pun CS, Xia K, Lee SX. Persistent-homology-based machine learning and its applications--A survey. arXiv preprint. 2018. Source: <https://arxiv.org/abs/1811.00252>. DOI: 10.48550/arXiv.1811.00252.
  9. Ghrist R. Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society 2008; 45(1): 61-75. DOI: 10.1090/S0273-0979-07-01191-3.
  10. Mischaikow K, Nanda V. Morse theory for filtrations and efficient computation of persistent homology. Discrete & Computational Geometry 2013; 50(2): 330-353. DOI: 10.1007/s00454-013-9529-6.
  11. Xia K. A quantitative structure comparison with persistent similarity. arXiv preprint. 2017. Source: <https://arxiv.org/abs/1707.03572>. DOI: 10.48550/arXiv.1707.03572.
  12. Chukanov SN. Comparison of objects' images based on computational topology methods. Informatics and Automation 2019; 18(5): 1043-1065. DOI: 10.15622/sp.2019.18.5.1043-1065.
  13. Chukanov SN. The comparison of diffeomorphic images based on the construction of persistent homology. Automatic Control and Computer Sciences 2020; 54(7): 758-771. DOI: 10.3103/S0146411620070056.
  14. Vipond O. Multiparameter persistence landscapes. J Mach Learn Res 2020; 21(61): 1-38.
  15. Botnan MB, Lesnick M. An introduction to multiparameter persistence. arXiv preprint. 2022. Source: <https://arxiv.org/abs/2203.14289>. DOI: 10.48550/arXiv.2203.14289.
  16. Adcock A, Carlsson E, Carlsson G. The ring of algebraic functions on persistence bar codes. arXiv preprint. 2013. Source: <https://arxiv.org/abs/1304.0530>.
  17. Kwitt R, et al. Statistical topological data analysis-a kernel perspective. NIPS'15: Proc 28th Int Conf on Neural Information Processing Systems 2015; 2: 3070-3078.
  18. Sriperumbudur BK, Fukumizu K, Lanckriet GRG. Universality, characteristic kernels and RKHS embedding of measures. J Mach Learn Res 2011; 12(7): 2389-2410.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20