(47-6) 10 * << * >> * Русский * English * Содержание * Все выпуски

Моделирование пространственного распределения рассеянного света при освещении резонансной дифракционной решётки структурированным излучением
С.Н. Хонина 1,2, Ю.В. Капитонов 2

ИСОИ РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН,
443001, Россия, г. Самара, ул. Молодогвардейская, д. 151;
Санкт-Петербургский государственный университет,
198504, Россия, г. Санкт-Петербург, ул. Ульяновская, д. 1

 PDF, 1907 kB

DOI: 10.18287/2412-6179-CO-1404

Страницы: 927-937.

Аннотация:
В данной работе проведён сравнительный теоретический анализ и численное моделирование действия различных типов решёток в дальней зоне дифракции на основе преобразования Фурье. Более детально рассмотрен пространственный спектр (картины дифракции в дальней зоне или в фокальной плоскости) бинарных амплитудных решёток, в том числе с учётом вариаций фил-фактора. При анализе характеристик экспериментально созданных резонансных решёток на основе галогенидных перовскитов рассмотрено влияние типа освещающего пучка на формирование первых трёх дифракционных порядков.

Ключевые слова:
резонансная дифракционная решётка, пространственный спектр, структурированное излучение.

Благодарности
Работа выполнена при поддержке Министерства науки и высшего образования РФ (Мегагрант № 075-15-2022-1112), а также в рамках Государственного задания ФНИЦ «Кристаллография и фотоника» РАН (в части сравнительного теоретического анализа).

Цитирование:
Хонина, С.Н. Моделирование пространственного распределения рассеянного света при освещении резонансной дифракционной решётки структурированным излучением / С.Н. Хонина, Ю.В. Капитонов // Компьютерная оптика. – 2023. – Т. 47, № 6. – С. 927-937. – DOI: 10.18287/2412-6179-CO-1404.

Citation:
Khonina SN, Kapitonov YV. Simulation of the spatial distribution of scattered light under illumination of a resonant diffraction grating with structured light. Computer Optics 2023; 47(6): 927-937. DOI: 10.18287/2412-6179-CO-1404.

References:

  1. Hutley MC. Diffraction gratings. New York: Academic Press; 1982. ISBN: 978-0-12-362980-7.
  2. Born M, Wolf E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. Cambridge: Cambridge University Press; 1999.
  3. Palmer C, Loewen E. Diffraction grating handbook. Rochester, NY: Newport Corp; 2002.
  4. Dammann GH, Görtler K. High efficiency in-line multiple imaging by means of multiple phase holograms. Opt Commun 1971; 3(5): 312-315. DOI: 10.1016/0030-4018(71)90095-2.
  5. Lee WH. High efficiency multiple beam gratings. Appl Opt 1979; 18(13): 2152-2158. DOI: 10.1364/AO.18.002152.
  6. Mait JN. Design of binary-phase and multiphase Fourier gratings for array generation. J Opt Soc Am A 1990; 7(8): 1514-1528. DOI: 10.1364/JOSAA.7.001514.
  7. O’Shea DC. Reduction of the zero-order intensity in binary Dammann gratings. Appl Opt 1995; 34(28): 6533-6537. DOI: 10.1364/AO.34.006533.
  8. Miller JM, Taghizadeh MR, Turunen J, Ross N. Multilevel-grating array generators: Fabrication error analysis and experiments. Appl Opt 1993; 32(14): 2519-2525. DOI: 10.1364/AO.32.002519.
  9. Lizotte T, Rosenberg R, Obar O. Actual performance vs. modeled performance of diffractive beam splitters. Proc SPIE 2005; 5876: 505-515. DOI: 10.1117/12.618549.
  10. Wolfe WL. Introduction to grating spectrometers. Bellingham, Washington: SPIE Press; 1997.
  11. Karpeev SV, Khonina SN, Kharitonov SI. Study of the diffraction grating on a convex surface as a dispersive element. Computer Optics 2015; 39(2): 211-217. DOI: 10.18287/0134-2452-2015-39-2-211-217.
  12. Pavlycheva NK. Diffraction gratings for spectral devices [Review]. J Opt Technol 2022; 89(3): 142-150. DOI: 10.1364/JOT.89.000142.
  13. Berezny AE, Karpeev SV, Uspleniev GV. Computer-generated holographic optical elements produced by photolithography. Opt Lasers Eng 1991; 15(5): 331-340. DOI: 10.1016/0143-8166(91)90020-T.
  14. Levy U, Desiatov B, Goykhman I, Nachmias T, Ohayon A, Meltzer SE. Design, fabrication, and characterization of circular Dammann gratings based on grayscale lithography. Opt Lett 2010; 35(6): 880-882. DOI: 10.1364/OL.35.000880.
  15. Bhardwaj P, Erdmann A, Leitel R. Modeling of grayscale lithography and calibration with experimental data for blazed gratings. Proc SPIE 2021; 11875: 118750K. DOI: 10.1117/12.2597203.
  16. Rebollar E, Castillejo M, Ezquerra TA. Laser induced periodic surface structures on polymer films: From fundamentals to applications. Eur Polym J 2015; 73: 162-174. DOI: 10.1016/j.eurpolymj.2015.10.012.
  17. Pawlik G, Wysoczanski T, Mitus AC. Complex dynamics of photoinduced mass transport and surface relief gratings formation. Nanomaterials 2019; 9(3): 352. DOI: 10.3390/nano9030352.
  18. Jelken J, Henkel C, Santer S. Formation of half-period surface relief gratings in azobenzene containing polymer films. Appl Phys B 2020; 126: 149. DOI: 10.1007/s00340-020-07500-w.
  19. Porfirev A, Khonina S, Meshalkin A, Ivliev N, Achimova E, Abashkin V, Prisacar A, Podlipnov V. Two-step maskless fabrication of compound fork-shaped gratings in nanomultilayer structures based on chalcogenide glasses. Opt Lett 2021; 46(13): 3037-3040. DOI: 10.1364/OL.427335.
  20. Reda F, Salvatore M, Borbone F, Maddalena P, Oscurato SL. Accurate morphology-related diffraction behavior of light-induced surface relief gratings on azopolymers. ACS Materials Lett 2022; 4(5): 953-959. DOI: 10.1021/acsmaterialslett.2c00171.
  21. Kapitonov YuV, Kozhaev MA, Dolgikh YuK, Eliseev SA, Efimov YuP, Ulyanov PG, Petrov VV, Ovsyankin VV. Spectrally selective diffractive optical elements based on 2D-exciton resonance in InGaAs/GaAs single quantum wells. Phys Status Solidi B 2013; 250(10): 2180-2184. DOI: 10.1002/pssb.201349112.
  22. Kapitonov YuV, Shapochkin PYu, Beliaev LYu, Petrov YuV, Efimov YuP, Eliseev SA, Lovtcius VA, Petrov VV, Ovsyankin VV. Ion-beam-assisted spatial modulation of inhomogeneous broadening of a quantum well resonance: excitonic diffraction grating. Opt Lett 2016; 41(1): 104-106. DOI: 10.1364/OL.41.000104.
  23. Shapochkin PYu, Petrov YuV, Eliseev SA, Lovcjus VA, Efimov YuP, Kapitonov YuV. Modelling and optimization of the excitonic diffraction grating. J Opt Soc Am A 2019; 36(9): 1505-1511. DOI: 10.1364/JOSAA.36.001505.
  24. Kapitonov YuV, Shapochkin PYu, Petrov YuV, Lovtcius VA, Eliseev SA, Efimov YuP. Diffraction from excitonic diffraction grating. J Phys Conf Ser 2019; 1368: 022013. DOI: 10.1088/1742-6596/1368/2/022013.
  25. Mamaeva MP, Lozhkin MS, Shurukhina AV, Stroganov BV, Emeline AV, Kapitonov YuV. Halide perovskite excitonic diffraction grating. Adv Opt Mater 2023; 11(5): 2202152. DOI: 10.1002/adom.202202152.
  26. Kapitonov YuV, Shapochkin PYu, Petrov YuV, Efimov YuP, Eliseev SA, Dolgikh YuK, Petrov VV, Ovsyankin VV. Effect of irradiation by He+ and Ga+ ions on the 2D-exciton susceptibility of InGaAs/GaAs quantum-well structures. Phys Status Solidi B 2015; 252(9): 1950-1954. DOI: 10.1002/pssb.201451611.
  27. Yudin VI, Lozhkin M, Shurukhina AV, Emeline AV, Kapitonov YuV. Photoluminescence manipulation by the ion beam irradiation in CsPbBr3 halide perovskite single crystals. J Phys Chem C 2019; 123: 21130-21134. DOI: 10.1021/acs.jpcc.9b04267.
  28. Selivanov NI, Murzin AO, Yudin VI, Kapitonov YuV, Emeline AV. Counterdiffusion-in-gel growth of high optical and crystal quality MAPbX3 (MA = CH3NH3+, X = I−, Br−) lead-halide perovskite single crystals. CrystEngComm 2022; 24: 2976-2981. DOI: 10.1039/d2ce00096b.
  29. Samsonova AYu, Yudin VI, Shurukhina AV, Kapitonov YuV. Excitonic enhancement and excited excitonic states in CsPbBr3 halide perovskite single crystals. Materials 2023; 16(1): 185. DOI: 10.3390/ma16010185.
  30. Lozhkina OA, Yudin VI, Murashkina AA, Shilovskikh VV, Davydov VG, Kevorkyants R, Emeline AV, Kapitonov YuV, Bahnemann DW. Low inhomogeneous broadening of excitonic resonance in MAPbBr3 single crystals. J Phys Chem Lett 2018; 9(2): 302-305. DOI: 10.1021/acs.jpclett.7b02979.
  31. Nazarov RS, Solovev IA, Murzin AO, Selivanov NI, Even J, Emeline AV, Kapitonov YuV. Photon echo from free excitons in a CH3NH3PbI3 halide perovskite single crystal. Phys Rev B 2022; 105(24): 245202. DOI: 10.1103/PhysRevB.105.245202.
  32. Goodman JW. Introduction to Fourier optics. 2nd ed. New York: McGraw–Hill; 1996.
  33. Trichili A, Park K-H, Zghal M, Ooi BS, Alouini M-S. Communicating using spatial mode multiplexing: potentials, challenges, and perspectives. IEEE Commun Surv Tutor 2019; 21(4): 3175-3203. DOI: 10.1109/COMST.2019.2915981.
  34. Kazanskiy NL, Khonina SN, Karpeev SV, Porfirev AP. Diffractive optical elements for multiplexing structured laser beams. Quantum Electron 2020; 50(7): 629-635. DOI: 10.1070/QEL17276.
  35. Porfirev AP, Khonina SN. Experimental investigation of multi-order diffractive optical elements matched with two types of Zernike functions. Proc SPIE 2016; 9807: 98070E. DOI: 10.1117/12.2231378.
  36. Fu S, Zhang S, Wang T, Gao C. Measurement of orbital angular momentum spectra of multiplexing optical vortices. Opt Express 2016; 24(6): 6240-6248. DOI: 10.1364/OE.24.006240.
  37. Harrison C, Stafford CM, Zhang W, Karim A. Sinusoidal phase grating created by a tunably buckled surface. Appl Phys Lett 2004; 85(18): 4016-4018. DOI: 10.1063/1.1809281.
  38. Harvey JE, Pfisterer RN. Understanding diffraction grating behavior: including conical diffraction and Rayleigh anomalies from transmission gratings. Opt Eng 2019; 58(8): 087105. DOI: 10.1117/1.OE.58.8.087105.
  39. Ustinov AV, Porfir’ev AP, Khonina SN. Effect of the fill factor of an annular diffraction grating on the energy distribution in the focal plane. J Opt Technol 2017; 84(9): 580-587. DOI: 10.1364/JOT.84.000580.
  40. Torcal-Milla FJ, Sanchez-Brea LM. Diffraction by gratings with random fill factor. Appl Opt 2017; 56(18): 5253-5257. DOI: 10.1364/AO.56.005253.
  41. Khonina SN, Ustinov AV. Binary multi-order diffraction optical elements with variable fill factor for the formation and detection of optical vortices of arbitrary order. Appl Opt 2019; 58(30): 8227-8236. DOI: 10.1364/AO.58.008227.
  42. Meshalkin AYu, Podlipnov VV, Ustinov AV, Achimova EA. Analysis of diffraction efficiency of phase gratings in dependence of duty cycle and depth. J Phys Conf Ser 2019; 1368: 022047. DOI: 10.1088/1742-6596/1368/2/022047.
  43. Litchinitser NM. Structured light meets structured matter. Science 2012; 337(6098): 1054-1055. DOI: 10.1126/science.1226204.
  44. Rosales-Guzmán C, Ndagano B, Forbes A. A review of complex vector light fields and their applications. J Opt 2018; 20(12): 123001. DOI: 10.1088/2040-8986/aaeb7d.
  45. Angelsky OV, Bekshaev AY, Hanson SG, Zenkova CY, Mokhun II, Jun Z. Structured light: Ideas and concepts. Front Phys 2020; 8: 114. DOI: 10.3389/fphy.2020.00114.
  46. Forbes A, de Oliveira M, Dennis MR. Structured light. Nat Photonics 2021; 15: 253-262. DOI: 10.1038/s41566-021-00780-4.
  47. Andrews DL. Structured light and its applications: An introduction to phase structured beams and nanoscale optical forces. Academic Press; 2011.
  48. Kogelnik H, Li T. Laser beams and resonators. Appl Opt 1966; 5(10): 1550-1567. DOI: 10.1364/AO.5.001550.
  49. Siegman AE. Laser beams and resonators: Beyond the 1960s. IEEE J Sel Top Quantum Electron 2000; 6(6): 1389-1399. DOI: 10.1109/2944.902193.
  50. Chen YF, Lee CC, Wang CH, Hsieh MX. Laser transverse modes of spherical resonators: a review [Invited]. Chinese Opt Lett 2020; 18(9): 091404.
  51. Khonina SN, Kazanskiy NL, Karpeev SV, Butt MA. Bessel beam: Significance and applications–A progressive review. Micromachines 2020; 11(11): 997. DOI: 10.3390/mi11110997.
  52. Padgett MJ. Orbital angular momentum 25 years on [Invited]. Opt Express 2017; 25(10): 11265-11274. DOI: 10.1364/OE.25.011265.
  53. Wang XW, Nie ZQ, Liang Y, Wang J, Li T, Jia BH. Recent advances on optical vortex generation. Nanophotonics 2018; 7(9): 1533-1556. DOI: 10.1515/nanoph-2018-0072.
  54. Shen Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M, Yuan X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci Appl 2019; 8: 90. DOI: 10.1038/s41377-019-0194-2.
  55. Chen J, Wan C, Zhan Q. Engineering photonic angular momentum with structured light: a review. Adv Photon 2021; 3(6): 064001. DOI: 10.1117/1.AP.3.6.064001.
  56. Porfirev AP, Kuchmizhak AA, Gurbatov SO, Juodkazis S, Khonina SN, Kul’chin YuN. Phase singularities and optical vortices in photonics. Physics–Uspekhi 2022; 65(8): 789-811. DOI: 10.3367/UFNe.2021.07.039028.
  57. Porfirev A, Khonina S, Kuchmizhak A. Light–matter interaction empowered by orbital angular momentum: Control of matter at the micro- and nanoscale. Prog Quantum Electron 2023; 88: 100459. DOI: 10.1016/j.pquantelec.2023.100459.
  58. Bandres MA, Gutierrez-Vega JC, Chavez-Cerda S. Parabolic nondiffracting optical wave fields. Opt Lett 2004; 29(1): 44-46. DOI: 10.1364/OL.29.000044.
  59. Belafhal A, Ez-Zariy L, Hennani S, Nebdi H. Theoretical introduction and generation method of a novel nondiffracting waves: Olver beams. Opt Photon J 2015; 5(7): 234-246. DOI: 10.4236/opj.2015.57023.
  60. Siviloglou GA, Christodoulides DN. Accelerating finite energy Airy beams. Opt Lett 2007; 32(8): 979-981. DOI: 10.1364/OL.32.000979.
  61. Khonina SN. Specular and vortical Airy beams. Opt Commun 2011; 284(19): 4263-4271. DOI: 10.1016/j.optcom.2011.05.068.
  62. Zang F, Wang Y, Li L. Dual self-accelerating properties of one-dimensional finite energy Pearcey beam. Results Phys 2019; 15: 102656. DOI: 10.1016/j.rinp.2019.102656.
  63. Efremidis NK, Christodoulides DN. Abruptly autofocusing waves. Opt Lett 2010; 35(23): 4045-4047. DOI: 10.1364/OL.35.004045.
  64. Davis JA, Cottrell DM, Sand D. Abruptly autofocusing vortex beams. Opt Express 2012; 20(12): 13302-13310. DOI: 10.1364/OE.20.013302.
  65. Chen B, Chen C, Peng X, Peng Y, Zhou M, Deng D. Propagation of sharply autofocused ring Airy Gaussian vortex beams. Opt Express 2015; 23(12): 19288-19298. DOI: 10.1364/OE.23.019288.
  66. Khonina SN, Porfirev AP, Ustinov AV. Sudden autofocusing of superlinear chirp beams. J Opt 2018; 20(2): 025605. DOI: 10.1088/2040-8986/aaa075.
  67. Chen X, Deng D, Zhuang J, Yang X, Liu H, Wang G. Nonparaxial propagation of abruptly autofocusing circular Pearcey Gaussian beams. Appl Opt 2018; 57(28): 8418-8423. DOI: 10.1364/AO.57.008418.
  68. Khonina SN. Mirror and circular symmetry of autofocusing beams. Symmetry 2021; 13(10): 1794. DOI: 10.3390/sym13101794.
  69. Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys Rev A 1992; 45(11): 8185-8189. DOI: 10.1103/PhysRevA.45.8185.
  70. Khonina SN, Kotlyar VV, Soifer VA, Honkanen M, Lautanen J, Turunen J. Generation of rotating Gauss–Laguerre modes with binary-phase diffractive optics. J Mod Opt 1999; 46(2): 227-238. DOI: 10.1080/09500349908231267.
  71. Khonina SN, Kotlyar VV, Soifer VA. Self-reproduction of multimode Hermite–Gaussian beams. Tech Phys Lett 1999; 25(6): 489-491. DOI: 10.1134/1.1262525.
  72. Enderlein J, Pampaloni F. Unified operator approach for deriving Hermite–Gaussian and Laguerre–Gaussian laser modes. J Opt Soc Am A 2004; 21(8): 1553-1558. DOI: 10.1364/JOSAA.21.001553.
  73. Barwick S. Accelerating regular polygon beams. Opt Lett 2010; 35(24): 4118-4120. DOI: 10.1364/OL.35.004118.
  74. Khonina SN, Ustinov AV, Porfirev AP. Aberration laser beams with autofocusing properties. Appl Opt 2018; 57(6): 1410-1416. DOI: 10.1364/AO.57.001410.
  75. Fang Z-X, Zhao H-Z, Chen Y, Lu R-D, He L-Q, Wang P. Accelerating polygon beam with peculiar features. Sci Rep 2019; 9: 17817. DOI: 10.1038/s41598-019-54457-8.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20