(47-6) 11 * << * >> * Русский * English * Содержание * Все выпуски

Особенности дифракции Гауссовых пучков в ближней зоне при изменении высоты кремниевых субволновых оптических элементов
Д.А. Савельев 1,2

Самарский национальный исследовательский университет имени академика С.П. Королёва,
443086, Россия, г. Самара, Московское шоссе, д. 34;
ИСОИ РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН,
443001, Россия, г. Самара, ул. Молодогвардейская, д. 151

 PDF, 3106 kB

DOI: 10.18287/2412-6179-CO-1402

Страницы: 938-947.

Аннотация:
В данной работе методом конечных разностей во временной области исследованы особенности дифракции Гауссовых пучков и мод Лагерра–Гаусса на кремниевых субволновых оптических элементах с переменной высотой рельефа в ближней зоне. В качестве оптических элементов рассматривались дифракционные аксиконы и субволновые кольцевые решетки при изменении высоты рельефа. Было показано, что возможен такой подбор высоты отдельных колец рельефа кольцевых решеток, при котором достижимо уменьшение размеров фокального пятна вплоть до 0,26λ, формирование протяженного светового отрезка (до 4,88λ), формирование оптических ловушек.

Ключевые слова:
Гауссовы пучки, оптические вихри, кремниевые кольцевые решетки, дифракционный аксикон, острая фокусировка, оптическая ловушка, FDTD.

Благодарности
Работа выполнена при поддержке Министерства науки и высшего образования в рамках выполнения Государственного задания (проект № FSSS-2023-0006) в частях «Введение», «Входные пучки и рассматриваемые 3D-элементы», «Исследование дифракции лазерного излучения на дифракционных аксиконах», а также за счет средств программы стратегического академического лидерства «Приоритет 2030» в остальных частях.

Цитирование:
Савельев, Д.А. Особенности дифракции Гауссовых пучков в ближней зоне при изменении высоты кремниевых субволновых оптических элементов / Д.А. Савельев // Компьютерная оптика. – 2023. – Т. 47, № 6. – С. 938-947. – DOI: 10.18287/2412-6179-CO-1402.

Citation:
Savelyev DA. Features of a Gaussian beam near-field diffraction upon variations in the relief height of subwavelength silicon optical elements. Computer Optics 2023; 47(6): 938-947. DOI: 10.18287/2412-6179-CO-1402.

References:

  1. Siew SY, Li B, Gao F, Zheng HY, Zhang W, Guo P, Xie SW, Song A, Dong B, Luo LW, Li C, Lo GQ. Review of silicon photonics technology and platform development. J Lightw Technol 2021; 39(13): 4374-4389. DOI: 10.1109/JLT.2021.3066203.
  2. Shastri BJ, Tait AN, de Lima TF, Pernice WH, Bhaskaran H, Wright CD, Prucnal PR. Photonics for artificial intelligence and neuromorphic computing. Nat Photon 2021; 15(2): 102-114. DOI: 10.1038/s41566-020-00754-y.
  3. Liu S, Feng J, Tian Y, Zhao H, Jin L, Ouyang B, Zhu J, Guo J. Thermo-optic phase shifters based on silicon-on-insulator platform: State-of-the-art and a review. Front Optoelectron 2022; 15(1): 9. DOI: 10.1007/s12200-022-00012-9.
  4. Genty G, Salmela L, Dudley JM, Brunner D, Kokhanovskiy A, Kobtsev S, Turitsyn SK. Machine learning and applications in ultrafast photonics. Nat Photon 2021; 15(2): 91-101. DOI: 10.1038/s41566-020-00716-4.
  5. Khonina SN, Kazanskiy NL, Butt MA, Karpeev SV. Optical multiplexing techniques and their marriage for on-chip and optical fiber communication: a review. Opto-Electron Adv 2022; 5(8): 210127. DOI: 10.29026/oea.2022.210127.
  6. Guilhot D, Ribes-Pleguezuelo P. Laser technology in photonic applications for space. Instruments 2019; 3(3): 50. DOI: 10.3390/instruments3030050.
  7. Barmpoutis P, Papaioannou P, Dimitropoulos K, Grammalidis N. A review on early forest fire detection systems using optical remote sensing. Sensors 2020; 20(22): 6442. DOI: 10.3390/s20226442.
  8. Butt M, Khonina SN, Kazanskiy NL. Optical elements based on silicon photonics. Computer Optics 2019; 43(6): 1079-1083. DOI: 10.18287/2412-6179-2019-43-6-1079-1083.
  9. Wendisch FJ, Rey M, Vogel N, Bourret GR. Large-scale synthesis of highly uniform silicon nanowire arrays using metal-assisted chemical etching. Chem Mater 2020; 32(21): 9425-9434. DOI: 10.1021/acs.chemmater.0c03593.
  10. Savelyev D, Kazanskiy N. Near-field vortex beams diffraction on surface micro-defects and diffractive axicons for polarization state recognition. Sensors 2021; 21(6): 1973. DOI: 10.3390/s21061973.
  11. Shi Y, Zhang Y, Wan Y, Yu Y, Zhang Y, Hu X, Xiao X, Xu H, Zhang L, Pan B. Silicon photonics for high-capacity data communications. Photonics Res 2022; 10(9): A106-A134. DOI: 10.1364/PRJ.456772.
  12. Cheng L, Mao S, Li Z, Han Y, Fu HY. Grating couplers on silicon photonics: Design principles, emerging trends and practical issues. Micromachines 2020; 11(7): 666. DOI: 10.3390/mi11070666.
  13. Wu S, Mu X, Cheng L, Mao S, Fu HY. State-of-the-art and perspectives on silicon waveguide crossings: A review. Micromachines 2020; 11(3): 326. DOI: 10.3390/mi11030326.
  14. Fatkhiev DM, Butt MA, Grakhova EP, Kutluyarov RV, Stepanov IV, Kazanskiy NL, Khonina SN, Lyubopytov VS, Sultanov AK. Recent advances in generation and detection of orbital angular momentum optical beams – A review. Sensors 2021; 21(15): 4988. DOI: 10.3390/s21154988.
  15. Shen Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M, Yuan X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci Appl 2019; 8: 90. DOI: 10.1038/s41377-019-0194-2.
  16. Savelyev DA. The investigation of the features of focusing vortex super-Gaussian beams with a variable-height diffractive axicon. Computer Optics 2021; 45(2): 214-221. DOI: 10.18287/2412-6179-CO-862.
  17. Savelyev DA. Peculiarities of focusing circularly and radially polarized super-Gaussian beams using ring gratings with varying relief height. Computer Optics 2022; 46(4): 537-546. DOI: 10.18287/2412-6179-CO-1131.
  18. Zhu F, Huang S, Shao W, Zhang J, Chen M, Zhang W, Zeng J. Free-space optical communication link using perfect vortex beams carrying orbital angular momentum (OAM). Opt Commun 2017; 396: 50-57. DOI: 10.1016/j.optcom.2017.03.023.
  19. Khonina SN, Karpeev SV, Butt MA. Spatial-light-modulator-based multichannel data transmission by vortex beams of various orders. Sensors 2021; 21(9): 2988. DOI: 10.3390/s21092988.
  20. Savelyev D, Degtyarev S. Features of the optical vortices diffraction on silicon ring gratings. Optical Memory and Neural Networks 2022; 31(1): 55-66. DOI: 10.3103/S1060992X22050095.
  21. Savelyev DA. The comparison of laser radiation focusing by diffractive axicons and annular gratings with variable height using high-performance computer systems. 2021 Photonics & Electromagnetics Research Symposium (PIERS) 2021: 2709-2716. DOI: 10.1109/PIERS53385.2021.9694860.
  22. Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner AE, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 2013; 340(6140): 1545-1548. DOI: 10.1126/science.1237861.
  23. Sirenko AA, Marsik P, Bernhard C, Stanislavchuk TN, Kiryukhin V, Cheong SW. Terahertz vortex beam as a spectroscopic probe of magnetic excitations. Phys Rev Lett 2019; 122(23): 237401. DOI: 10.1103/PhysRevLett.122.237401.
  24. Khonina SN, Ustinov AV, Volotovskiy SG, Ivliev NA, Podlipnov VV. Influence of optical forces induced by paraxial vortex Gaussian beams on the formation of a microrelief on carbazole-containing azopolymer films. Appl Opt 2020; 59(29): 9185-9194. DOI: 10.1364/AO.398620.
  25. Paez-Lopez R, Ruiz U, Arrizon V, Ramos-Garcia R. Optical manipulation using optimal annular vortices. Opt Lett 2016; 41(17): 4138-4141. DOI: 10.1364/OL.41.004138.
  26. Lamperska W, Masajada J, Drobczyński S, Wasylczyk P. Optical vortex torque measured with optically trapped microbarbells. Appl Opt 2020; 59(15): 4703-4707. DOI: 10.1364/AO.385167.
  27. Savelyev DA, Karpeev SV. Development of 3D microstructures for the formation of a set of optical traps on the optical axis. Photonics 2023; 10(2): 117. DOI: 10.3390/photonics10020117.
  28. Yang Z, Lin X, Zhang H, Ma X, Zou Y, Xu L, Xu Y, Jin L. Design of bottle beam based on dual-beam for trapping particles in air. Appl Opt 2019; 58(10): 2471-2480. DOI: 10.1364/AO.58.002471.
  29. Savelyev DA, Khonina SN. Characteristics of sharp focusing of vortex Laguerre-Gaussian beams. Computer Optics 2015; 39(5): 654-662. DOI: 10.18287/0134-2452-2015-39-5-654-662.
  30. Khonina SN, Kazanskiy NL, Khorin PA, Butt MA. Modern types of axicons: New functions and applications. Sensors 2021; 21(19): 6690. DOI: 10.3390/s21196690.
  31. Supp S, Jahns J. Coaxial superposition of Bessel beams by discretized spiral axicons. J Eur Opt Soc Rapid Publ 2018; 14: 18. DOI: 10.1186/s41476-018-0086-8.
  32. Balčytis A, Hakobyan D, Gabalis M, Žukauskas A, Urbonas D, Malinauskas M, Petruškevičius R, Brasselet E, Juodkazis S. Hybrid curved nano-structured micro-optical elements. Opt Express 2016; 24(15): 16988. DOI: 10.1364/OE.24.016988.
  33. Khonina SN, Ustinov AV. Binary multi-order diffraction optical elements with variable fill factor for the formation and detection of optical vortices of arbitrary order. Appl Opt 2019; 58(30): 8227-8236. DOI: 10.1364/AO.58.008227.
  34. Yu S. Potentials and challenges of using orbital angular momentum communications in optical interconnects. Opt Express 2015; 23(3): 3075. DOI: 10.1364/OE.23.003075.
  35. Prather DW, Shi S. Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements. J Opt Soc Am A 1999; 16(5): 1131-1142. DOI: 10.1364/JOSAA.16.001131.
  36. Hanson JC. Broadband RF phased array design with MEEP: Comparisons to array theory in two and three dimensions. Electronics 2021; 10(4): 415. DOI: 10.3390/electronics10040415
  37. Savelyev DA. The investigation of focusing of cylindrically polarized beams with the variable height of optical elements using high-performance computer systems. Proc SPIE 2021; 11793: 117930X. DOI: 10.1117/12.2591993.
  38. Zhuang J, Zhang L, Deng D. Tight-focusing properties of linearly polarized circular Airy Gaussian vortex beam. Opt Lett 2020; 45(2): 296-299. DOI: 10.1364/OL.45.000296.
  39. Khonina SN, Kazanskiy NL, Ustinov AV, Volotovskiy SG. The lensacon: nonparaxial effects. J Opt Technol 2011; 78(11): 724-729. DOI: 10.1364/JOT.78.000724.
  40. Ding X, Ren Y, Lu R. Shaping super-Gaussian beam through digital micro-mirror device. Sci China Phys Mech 2015; 58(3): 1-6. DOI: 10.1007/s11433-014-5499-9.
  41. Darafsheh A, Bollinger D. Systematic study of the characteristics of the photonic nanojets formed by dielectric microcylinders. Opt Commun 2017; 402: 270-275. DOI: 10.1016/j.optcom.2017.06.004.
  42. Xing H, Zhou W, Wu Y. Side-lobes-controlled photonic nanojet with a horizontal graded-index microcylinder. Opt Lett 2018, 43(17): 4292-4295. DOI: 10.1364/OL.43.004292
  43. Wei P-K, Chang W-L, Lee K-L, Lin E-H. Focusing subwavelength light by using nanoholes in a transparent thin film. Opt Lett 2009; 34(12): 1867-1869. DOI: 10.1364/OL.34.001867.
  44. Savelyev DA, Khonina SN. Numerical analysis of subwavelength focusing using a silicon cylinder. Computer Optics 2014; 38(4): 638-642. DOI: 10.18287/0134-2452-2014-38-4-638-642.
  45. Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 1986; 11(5): 288-290. DOI: 10.1364/OL.11.000288.
  46. Dai X, Fu W, Chi H, Mesias VSD, Zhu H, Leung CW, Liu W, Huang J. Optical tweezers-controlled hotspot for sensitive and reproducible surface-enhanced Raman spectroscopy characterization of native protein structures. Nat Commun 2021; 12: 1292. DOI: 10.1038/s41467-021-21543-3.
  47. Gong Z, Pan YL, Videen G, Wang C. Optical trapping and manipulation of single particles in air: Principles, technical details, and applications. J Quant Spectrosc Radiat Transf 2018; 214: 94-119. DOI: 10.1016/j.jqsrt.2018.04.027.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20