(48-3) 04 * << * >> * Русский * English * Содержание * Все выпуски

Влияние длины волны на распространение мощных фемтосекундных лазерных импульсов в алмазе
Т.В. Кононенко 1, Е.В. Заведеев 1, К.Х. Ашиккалиева 1, В.И. Конов 1

Институт общей физики им. А.М.Прохорова Российской академии наук,
119991, Россия, г. Москва, ул. Вавилова, д. 38

  PDF, 1853 kB

DOI: 10.18287/2412-6179-CO-1452

Страницы: 349-355.

Аннотация:
Проведено численное моделирование распространения мощных фемтосекундных лазерных пучков в кристалле алмаза в режиме самофокусировки. Длина волны моделируемых пучков варьировалась в широком диапазоне (400 нм, 532 нм, 800 нм и 1064 нм), который охватывает наиболее распространённые ультракороткие лазерные системы. Для всех длин волн обнаружено ограничение роста плотности лазерной энергии внутри алмазного кристалла при увеличении энергии импульса. Данный эффект имеет определенное сходство с эффектом оптического лимитирования в лазерных филаментах, однако проявляется вне зоны формирования филамента и способен приводить к выравниванию плотности лазерной энергии, а также электронной плотности внутри обширной предфокальной области.

Ключевые слова:
алмаз, лазер, фемтосекундные импульсы, нелинейное поглощение, плазма.

Благодарности
Исследование выполнено при поддержке Российского научного фонда (проект № 22-22-00055).

Цитирование:
Кононенко, Т.В. Влияние длины волны на распространение мощных фемтосекундных лазерных импульсов в алмазе / Т.В.  Кононенко, Е.В. Заведеев, К.Х. Ашиккалиева, В.И. Конов // Компьютерная оптика. – 2024. – Т. 48, № 3. – С. 349-355. – DOI: 10.18287/2412-6179-CO-1452.

Citation:
Kononenko TV, Zavedeev EV, Ashikkalieva KK, Konov VI. Effect of wavelength on propagation of high-power femtosecond laser pulses in diamond. Computer Optics 2024; 48(3): 349-355. DOI: 10.18287/2412-6179-CO-1452.

References:

  1. Chin SL, Hosseini SA, Liu W, Luo Q, Théberge F, Aközbek N. The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges. Can J Phys 2011; 83(9): 863-905.
  2. Odhner J, Levis R. Optical spectroscopy using gas-phase femtosecond laser filamentation. Annu Rev Phys Chem 2014; 65(1): 605-628.
  3. Ishikawa K, Kumagai H, Midorikawa K. High-power regime of femtosecond-laser pulse propagation in silica: Multiple-cone formation, Phys Rev E 2002; 66: 056608. DOI: 10.1103/PhysRevE.66.056608.
  4. Kononenko VV, Zavedeev EV, Gololobov VM. The effect of light-induced plasma on propagation of intense fs laser radiation in c-Si. Appl Phys A 2016; 122: 293. DOI: 10.1007/s00339-016-9844-x.
  5. Chambonneau M, Grojo D, Tokel O, Ilday FÖ, Tzortzakis S, Nolte S. In-volume laser direct writing of silicon–challenges and opportunities. Laser Photon Rev 2021; 15: 2100140. DOI: 10.1002/lpor.202100140.
  6. Zavedeev EV, Kononenko VV, Konov VI. Delocalization of femtosecond laser radiation in crystalline Si in the mid-IR range. Laser Phys 2016; 26: 016101. DOI: 10.1088/1054-660X/26/1/016101.
  7. Werr F, Eppelt U, Müllers L, de Ligny D. Ultra-short-pulse laser filaments for float glass cutting: Influence of laser parameters on micro cracks formation. Front Phys 2022; 10: 86241. Source: <https://www.frontiersin.org/articles/10.3389/fphy.2022.862419>.
  8. Kononenko T, Ralchenko V, Bolshakov A, Konov V, Allegrini P, Pacilli M, Conte G, Spiritti E. All-carbon detector with buried graphite pillars in CVD diamond. Appl Phys A 2014; 114: 297-300.
  9. Sun B, Salter PS, Booth MJ. High conductivity micro-wires in diamond following arbitrary paths. Appl Phys Lett 2014; 105: 231105.
  10. Courvoisier A, Booth MJ, Salter PS. Inscription of 3D waveguides in diamond using an ultrafast laser. Appl Phys Lett 2016; 109: 031109.
  11. Kononenko VV, Vlasov II, Zavedeev EV, Khomich AA, Konov VI. Correlation between surface etching and NV centre generation in laser-irradiated diamond. Appl Phys A 2018; 124: 226.
  12. Hadden JP, Bharadwaj V, Sotillo B, et al. Integrated waveguides and deterministically positioned nitrogen vacancy centers in diamond created by femtosecond laser writing. Opt Lett 2018; 43(15): 3586-3589.
  13. Wang XJ, Fang HH, Sun FW, Sun HB. Laser writing of color centers. Laser Photon Rev 2021; 16: 2100029. DOI: 10.1002/lpor.202100029.
  14. Kononenko VV, Konov VI, Gololobov VM, Zavedeev EV. Propagation and absorption of high-intensity femtosecond laser radiation in diamond. Quantum Electron 2014; 44: 1099. DOI 10.1070/QE2014v044n12ABEH015459.
  15. Kozák М, Trojánek F, Dzurňák B, Malý P. Two- and three-photon absorption in chemical vapor deposition diamond. J Opt Soc Am B 2012; 29: 1141-1145.
  16. Grivickas P, Ščajev P, Kazuchits N, Lastovskii S, Voss L F, Conway AM, Mazanik A, Korolik O, Bikbajevas V, Grivickas V. Carrier recombination and diffusion in high-purity diamond after electron irradiation and annealing. Appl Phys Lett 2020; 117: 242103.
  17. Griffiths B, Kirkpatrick A, Nicley SS, Patel RL, Zajac JM, Morley GW, Booth MJ, Salter PS, Smith JM. Microscopic processes during ultrafast laser generation of Frenkel defects in diamond. Phys Rev B 2021; 104, 174303.
  18. Kudryashov SI, Danilov PA, Kuzmin EV, Gulina YuS, Rupasov AE, Krasin GK, Zubarev IG, Levchenko AO, Kovalev MS, Pakholchuk PP, Ostrikov SA, Ionin AA. Pulse-width-dependent critical power for self-focusing of ultrashort laser pulses in bulk dielectrics. Opt Lett 2022; 47: 3487-3490.
  19. Kudryashov SI, Danilov PA, Smirnov NA, Stsepuro NG, Rupasov AE, Khmelnitskii RA, Oleynichuk EA, Kuzmin EV, Levchenko AO, Gulina YuS, Shelygina SN, Sozaev IV, Kovalev MS, Kovalchuk OE. Signatures of ultrafast electronic and atomistic dynamics in bulk photoluminescence of CVD and natural diamonds excited by ultrashort laser pulses of variable pulsewidth. Appl Surf Sci 2022; 575: 151736.
  20. Kudryashov SI, Levchenko AO, Danilov PA, Smirnov NA, Ionin AA. IR femtosecond laser micro-filaments in diamond visualized by inter-band UV photoluminescence. Opt Lett 2020; 45: 2026-2029.
  21. Kudryashov S, Danilov P, Smirnov N, Levchenko A, Kovalev M, Gulina Yu, Kovalchuk O, Ionin A. Femtosecond-laser excited luminescence of the A-band in natural diamond and its thermal control. Opt Mater Express 2021; 11: 2505-2513.
  22. Apostolova T, Kurylo V, Gnilitskyi I. Ultrafast laser processing of diamond materials: A review. Front Phys 2021; 9: 650280. DOI: 10.3389/fphy.2021.650280.
  23. Manenkov AA. Self-focusing of laser pulses: current state and future prospects. Physics-Uspekhi 2011; 54(1): 100-104.
  24. Arnold C, Heisterkamp A, Ertmer W, Lubatschowski H. Streak formation as side effect of optical breakdown during processing the bulk of transparent Kerr media with ultra-short laser pulses. Appl Phys B 2005; 80: 247-253.
  25. Nava F, Canali C, Jacoboni C, Reggiani L, Kozlov SF. Electron effective masses and lattice scattering in natural diamond. Solid State Commun 1980; 33: 475-477. DOI: 10.1016/0038-1098(80)90447-0.
  26. Collins A.T. Band structure, Chapter 1, p. 12 in Prelas, M.A., Popovici, G., & Bigelow, L.K. (Eds.). (1998). Handbook of Industrial Diamonds and Diamond Films (1st ed.). CRC Press. https://doi.org/10.1201/9780203752807 
  27. Keldysh LV. Ionization in the field of a strong electromagnetic wave. Soviet Physics JETP 1965; 20(5): 1945-1957.
  28. Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media. Phys Rep 2007; 441: 47-189. DOI: 10.1016/j.physrep.2006.12.005.
  29. Kononenko VV, Zavedeev EV, Latushko MI, Konov VI. Observation of fs laser-induced heat dissipation in diamond bulk. Laser Phys Lett 2013; 10: 036003. DOI: 10.1088/1612-2011/10/3/036003.
  30. Lagomarsino S, Sciortino S, Obreshkov B, Apostolova T, Corsi C, Bellini M, Berdermann E, Schmidt CJ. Photoionization of monocrystalline CVD diamond irradiated with ultrashort intense laser pulse. Phys Rev B 2016; 93: 085128.
  31. Kononenko VV, Konov VI, Gololobov VM, Zavedeev EV. Propagation and absorption of high-intensity femtosecond laser radiation in diamond. Quantum Electron 2014; 44: 1099-1103.
  32. Klein СA, DeSalvo R. Thresholds for dielectric breakdown in laser-irradiated diamond. Appl Phys Lett 1993; 63: 1895-1897.
  33. Rämer A, Osmani O, Rethfeld B. Laser damage in silicon: Energy absorption, relaxation, and transport. J Appl Phys 2014; 16(5): 053508.
  34. Liu WW. Intensity clamping during femtosecond laser filamentation. Chin J Phys 2014; 52: 465-489.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20