(48-3) 09 * << * >> * Русский * English * Содержание * Все выпуски

Методология и алгоритмы получения дальностных 3D-портретов объектов по 2D-распределениям интенсивности усеченных реализаций отраженного лазерного излучения
В.И. Иванов 1

НИИ ядерных проблем Белорусского государственного университета,
220006, Беларусь, г. Минск, ул. Бобруйская, д. 11

  PDF, 7926 kB

DOI: 10.18287/2412-6179-CO-1301

Страницы: 386-396.

Аннотация:
Рассмотрены методология и алгоритмы получения дальностных 3D-портретов объектов по 2D-распределениям интенсивности усеченных реализаций отраженного лазерного излучения. Исследованы методические и инструментальные аспекты повышения разрешающей способности 3D-портретов по глубине рельефа поверхности. Получены уравнения зависимости разрешающей способности по рельефу от оптического контраста поверхности объекта. Показано, что разрешающая способность может быть менее 1 см. Предложенная методология и алгоритмы при одинаковой мощности зондирующих импульсов позволяют в десятки раз увеличить дальность действия 3D-лидаров по сравнению с ToF-технологией на основе алгоритмов «Range gated imagers», а также обеспечивают возможность реализации данной методологии на общедоступной элементной базе без необходимости применения специализированных интегральных ToF-процессоров.

Ключевые слова:
3D-портреты, 3D-изображения, лазерно-локационное распознавание.

Цитирование:
Иванов, В.И. Методология и алгоритмы получения дальностных 3D-портретов объектов по 2D-распределениям интенсивности усеченных реализаций отраженного лазерного излучения/ В.И. Иванов // Компьютерная оптика. – 2024. – Т. 48, № 3. – С. 386-396. – DOI: 10.18287/2412-6179-CO-1301.

Citation:
Ivanov VI. Methodology and algorithms for obtaining long-range 3D-portraits of objects based on 2D-intensity distributions of truncated realizations of reflected laser radiation. Computer Optics 2024; 48(3): 386-396. DOI: 10.18287/2412-6179-CO-1301.

References:

  1. Katenin VA. Laser technologies in foreign naval forces [In Russian]. Expert Union 2012; 6: 30-36.
  2. Baloev VN, Mishanin CC, Ovsyannikov VA, Yakubson CE, Yatsyk VC. Analysis of ways to improve the efficiency of ground–based optoelectronic observation complexes [In Russian]. Optl J 2012; 9(3): 22-32. DOI: 10.17586/1023-5086.
  3. Letalick D, Ahlberg J, Andersson P, Chevalier T, Grönwal Ch, Larsson H, Persson A, Klasén L. 3-D imaging by laser radar and applications in preventing and combating crime and terrorism. 2004. Source: <https://www.sto.nato.int/MP-SCI-158-16.pdf>.
  4. Busck J. Optical identification of sea-mines – Gated viewing three-dimensional laser radar. Technical University of Denmark; 2005. Source:      <https://backend.orbit.dtu.dk/backend.orbit.dtu.dk/ws/portalfiles/portal/3429200/Afhandling_jbfinal.pdf>.
  5. Andersen JF, Busch J, Heiselberg H. Long distance high accuracy 3-D laser radar and person identification. Proc SPIE 2005; 5791. DOI: 10.1117/12.604345.
  6. Van den Heuvel JC, Schoemaker RV, Schleijpen RHMA. Identification of air and sea-surface targets with a laser range profiler. Proc SPIE 2009; 7323: 73230Y. DOI: 10.1117/12.818426.
  7. Schoemaker RM, Benoist KW. Characterisation of small targets in a maritime environment by means of laser range profiling. Proc SPIE 2011; 8037; 803705. DOI: 10.1117/12.884575.
  8. Andersen JF, Busch J, Heiselberg H. Submillimeter 3-D laser radar for Spase Shuttle Tile inspection. Copengagen, Denmark: Danisch Defense Research Establishment 2013. Source:          <https://stanfordcomputeroptics.com/download/Submillimeter%203-D%20Laser%20Radar%20for%20Space%20Shuttle%20Tile%20Inspection.pdf>.
  9. Steinvall O, Tulldahl M. Laser range profiling for small target recognition. Opt Eng 2017; 56(3); 031206. DOI: 10.1117/1.OE.56.3.031206.
  10. Karasik VE, Orlov VM. Location laser vision systems [In Russian]. Moscow: Bauman Moscow State Technical University Publisher; 2013.
  11. Buryi EV. Pulse LIDARs: physical and informational base of new capabilities [In Russian]. Moscow: “Nauka” Publisher; 2020. ISBN: 978-5-02-040772-5.
  12. Zege EP, Ivanov FP, Katsev IL. Image transfer through a scattering medium. Berlin, Heidelberg: Springer-Verlag; 1991. ISBN: 3540519785.
  13. Ivanov VI, Ivanov NI. Method creasing the efficiency of laser active-pulsed vision systems for objects with quasi-zero optical contrast. J Appl Spectr 2022; 89(6): 858-868. DOI: 10.47612/0514-7506-2022-89-6-858-868.
  14. Kostylev AA. Identification of a radar target when using ultra-wideband signals: methods and applications [In Russian]. Foreign Radio Electronics 1984; 4: 75-104.
  15. Mitrofanov EV, Cherepenin VA. Radio vision of a target when probing with nanosecond pulses [In Russian]. Electromagnetic Waves and Electronic Systems 2015; 20(3): 46-58.
  16. Labunets LV, Borzov AB, Akhmetov IM. Real–time models of pulsed reflective characteristics of 3D objects in a single–position laser location system [In Russian]. Opt J 2020; 87(9): 17-23. DOI: 10.17586/1023-5086.
  17. Grinev AY, ed. Questions of subsurface location [In Russian]. Moscow: “Radio Engineering” Publisher; 2005.
  18. Antonov A. Scanning laser rangefinders [In Russian]. Modern Electronics 2016; 1: 10-16.
  19. Scanning laser rangefinders (LIDAR) [In Russian]. Source: <https://solarlaser.com/wp-content/uploads/2020/11/LIDAR-SOLARLS-2020-10-10.pdf>.
  20. Hansard М, Seungkyu L, Ouk Ch, Horaud H. Time of flight cameras: Principles, methods, and applications. Springer; 2012. ISBN: 978-1-4471-4658-2.
  21. Bai X, Hu Z, Zhu X, Huang Q, Chen Y, Fu H, Tai C-L. TransFusion: Robust LiDAR-camera fusion for 3D object detection with transformers. arXiv Preprint. 2022. Source: <https://arxiv.org/abs/2203.11496>.
  22. Li Y, Yu AW, Meng T, Caine B, Ngiam J, Peng D, Shen J, Wu B, Lu Y, Zhou D, Le QV, Yuille A, Tan M. DeepFusion: Lidar-camera deep fusion for multi-modal 3D object detection. arXiv Preprint. 2022. Source: <https://arxiv.org/pdf/2203.08195.pdf>.
  23. Ivanov VI, Ivanov NI. Long-range 3D imaging of  highly dynamic objects using the intensity ratios of partial beams of reflected laser light. Quantum Electron 2018; 48(7): 679-682. DOI: 10.1070/QEL16612.
  24. Ivanov VI, Ivanov NI. Investigation of the effect of noise parameters of 3D lidar on the error in estimating relief signatures of distant objects from 2D field intensity distributions of reflected radiation. Quantum Electron 2020; 50(11): 1068-1073. DOI: 10.1070/QEL17329.
  25. Taylor J. An introduction to error analysis. University Science Books; 1982. ISBN: 9780935702071.
  26. Matyukhin VV, Parinov DG, Tatarinova EA. Model noise photosensitive matrix Dalsa CM42M [In Russian]. Appl Physics 2017; 6: 60-67.
  27. Irie K, McKinnon AE, Unsworth K, Woodhead IM. A technique for evaluation of CCD videocamera noise. IEEE Trans Circuits Syst Video Technol 2008; 18(2): 280-284.
  28. Edwards S. Optimization of noise parameters of signal circuits. Part 2. Noise and distortion in data converters. Electronic Components 2013; 11: 19-25.
  29. Coates K, Fowler B, Holst G. Elimination of restrictions when using a scientific CMOS CAMERA (SCMOS) [In Russian]. Photonika 2016; 58(4): 102-110.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20