(48-3) 08 * << * >> * Русский * English * Содержание * Все выпуски

Трёхпериодические одномерные фотонные кристаллы на основе диэлектрических оксидов SiO2, Al2O3, TiO2, ZrO2: новый класс перспективных структур с широкими возможностями для прикладной фотоники
И.С. Паняев 1, Д.Г. Санников 1, Ю.С. Дадоенкова 2,3, Н.Н. Дадоенкова 4

Ульяновский государственный университет, 432017, Россия, г. Ульяновск, ул. Льва Толстого, д. 42;
Lab-STICC (UMR 6285), CNRS, ENIB, 29238, France, Brest Cedex 3;
ENI Brest, Institut de Recherche Dupuy de Lôme (IRDL, UMR CNRS 6027), F-29200, France, Brest;
Донецкий физико-технический институт имени А. А. Галкина,
83114, Россия, г. Донецк, ул. Р. Люксембург, д.72

  PDF, 2736 kB

DOI: 10.18287/2412-6179-CO-1401

Страницы: 376-385.

Аннотация:
Рассмотрены одномерные трёхпериодические фотонно-кристаллические структуры на основе диэлектрических немагнитных материалов (SiO2, Al2O3, TiO2, ZrO2), образующих сверхъячейки вида [(ab)N(cd)М]K, включающих «внутренние» подъячейки вида (ab)N и (cd)М. Классификация данного класса структур позволяет выделить три большие группы подъячеек, различающихся по величинам оптического контраста (низко-, средне- и высококонтрастные). С помощью метода матрицы переноса исследованы частотно-угловые спектры и энергетические характеристики фотонно-кристаллических структур, найдены оптимальные сочетания слоёв (и контрастности) для получения управляемых запрещённых фотонных зон. Обобщение полученных результатов показывает, что в области прозрачности наибольший практический интерес представляют оптические и энергетические свойства структур с высоким и средним оптическим контрастом. Обнаружено, что группа среднеконтрастных структур обладает большей гибкостью при формировании и перестройке запрещённой фотонной зоны за счёт практически равноценного влияния оптических свойств обеих ячеек на спектр пропускания. Анализ пространственно-углового распределения поперечной компоненты вектора Умова–Пойнтинга и варьирование количества подъячеек (внутренних периодов) показывает, что структура указанной группы может обеспечить управляемую картину излучения (на телекоммуникационной длине волны 1,55 мкм) на боковой поверхности кристалла. Результаты могут быть полезны при создании поляризационно-чувствительных ответвителей, высокочувствительных угловых датчиков для оптоволоконных систем и оптических фильтров, работающих в инфракрасном диапазоне.

Ключевые слова:
запрещенная фотонная зона, фотонный кристалл.

Благодарности
Работа выполнена при поддержке Российского научного фонда (проект № 23-22-00466).

Цитирование:
Паняев, И.С. Трёхпериодические одномерные фотонные кристаллы на основе диэлектрических оксидов SiO2, Al2O3, TiO2, ZrO2: новый класс перспективных структур с широкими возможностями для прикладной фотоники / И.С. Паняев, Д.Г. Санников, Ю.С. Дадоенкова, Н.Н. Дадоенкова // Компьютерная оптика. – 2024. – Т. 48, № 3. – С. 376-385. – DOI: 10.18287/2412-6179-CO-1401.

Citation:
Panyaev IS, Sannikov DG, Dadoenkova YS, Dadoenkova NN. Three-periodic 1D photonic crystals based on dielectric oxides SiO2, Al2O3, TiO2, ZrO2: an emerging class of structures with wide possibilities for applied photonics. Computer Optics 2024; 48(3): 376-385. DOI: 10.18287/2412-6179-CO-1401.

References:

  1. Shen H, Wang Z, Wu Y, Yang B. One-dimensional photonic crystals: fabrication, responsiveness and emerging applications in 3D construction. RSC Adv 2016; 6: 4505-4520. DOI: 10.1039/C5RA21373H.
  2. Gong Q, Hu X. Photonic crystals: Principles and applications. Pan Stanford; 2014.
  3. Kluge C, Pradana A, Adam J, Gerken M. Multi-periodic photonic crystal out-coupling layers for flexible OLEDs. Light Energy Environ (2014) 2014: DW3D.1. DOI: 10.1364/SOLED.2014.DW3D.1.
  4. Le ND, Nguyen-Tran T. Simulation of coupling optical modes in 1D photonic crystals for optoelectronic applications. J Sci Adv Mater Devices 2020; 5: 142-150. DOI: 10.1016/j.jsamd.2020.01.008.
  5. Panda A, Pukhrambam PD. Investigation of defect based 1D photonic crystal structure for real-time detection of waterborne bacteria. Phys B Condens Matter 2021; 607: 412854. DOI: 10.1016/J.PHYSB.2021.412854.
  6. Ramanujam NR, Amiri IS, Taya SA, et al. Enhanced sensitivity of cancer cell using one dimensional nano composite material coated photonic crystal. Microsyst Technol 2019; 25: 189-196. DOI: 10.1007/s00542-018-3947-6.
  7. Nouman WM, Abd El-Ghany SES, Sallam SM, Dawood AFB, Aly AH. Biophotonic sensor for rapid detection of brain lesions using 1D photonic crystal. Opt Quantum Electron 2020; 52: 287. DOI: 10.1007/s11082-020-02409-2.
  8. Celanovic I, O’Sullivan F, Ilak M, Kassakian J, Perreault D. Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications. Opt Lett 2004; 29: 863-865. DOI: 10.1364/OL.29.000863.
  9. Pankin PS, Wu BR, Yang JH, Chen KP, Timofeev IV, Sadreev AF. One-dimensional photonic bound states in the continuum. Commun Phys 2020; 3: 91. DOI: 10.1038/s42005-020-0353-z.
  10. Fu Y, Zhai T. Distributed feedback organic lasing in photonic crystals. Front Optoelectron 2020; 13: 18. DOI: 10.1007/S12200-019-0942-1.
  11. Tolmachev VA, Perova TS, Berwick K. Design of one-dimensional composite photonic crystals with an extended photonic band gap. J Appl Phys 2006; 99: 033507. DOI: 10.1063/1.2165401.
  12. Vanyushkin NA, Gevorgyan AH, Golik SS. Approximation of one-dimensional rugate photonic crystals using symmetric ternary photonic crystals. Optik 2021; 242: 167343. DOI: 10.1016/J.IJLEO.2021.167343.
  13. Trabelsi Y, Belhadj W, Ben Ali N, Aly AH. Theoretical study of tunable optical resonators in periodic and quasiperiodic one-dimensional photonic structures incorporating a nematic liquid crystal. Photonics 2021; 8: 150. DOI: 10.3390/PHOTONICS8050150.
  14. Chen G, Yu H. The enlargement of high reflectance range in ultra-narrow bandpass filter with disordered one-dimensional photonic crystal. J Appl Phys 2014; 115: 033114. DOI: 10.1063/1.4862796.
  15. Glukhov IA, Dadoenkova YS, Bentivegna FFL, Moiseev SG. Deterministic aperiodic photonic crystal with a 2D array of metallic nanoparticles as polarization-sensitive dichroic filter. J Appl Phys 2020; 128: 053101. DOI: 10.1063/5.0008652.
  16. Jena S, Tokas RB, Thakur S, Udupa DV. Tunable mirrors and filters in 1D photonic crystals containing polymers. Phys E Low-Dimensional Syst Nanostructures 2019; 114: 113627. DOI: 10.1016/J.PHYSE.2019.113627.
  17. Dadoenkova NN, Dadoenkova YS, Panyaev IS, Sannikov DG, Lyubchanskii IL, Rozhleys IA, Krawczyk M. Complex photonic structure based on magneto-optic waveguide and photonic crystal. Proc 2016 Int Conf Days on Diffraction (DD) 2016: 106-111. DOI: 10.1109/DD.2016.7756823.
  18. Dadoenkova NN, Panyaev IS, , Dadoenkova YS, Rozhleys IA, Krawczyk M, Lyubchanskii IL. Complex waveguide based on a magneto-optic layer and a dielectric photonic crystal. Superlattices Microstruct 2016; 100: 45-56. DOI: 10.1016/j.spmi.2016.08.050.
  19. Panyaev IS, Dadoenkova NN, Dadoenkova YS, Rozhleys IA, Krawczyk M, Lyubchanskii IL, Sannikov DG. Four-layer nanocomposite structure as an effective optical waveguide switcher for near-IR regime. J Phys D Appl Phys 2016; 49: 435103. DOI: 10.1088/0022-3727/49/43/435103.
  20. Saeidi FS, Moradi M. Designing a multi-periodic photonic crystal with adjustable transmission peak for optical filter applications. J Nanostructures 2023; 13: 66-75. DOI: 10.22052/JNS.2023.01.008.
  21. Cos J, Ferre-Borrull J, Pallares J, Marsal LF. Tunable Fabry–Pérot filter based on one-dimensional photonic crystals with liquid crystal components. Opt Commun 2009; 282: 1220-1225. DOI: 10.1016/J.OPTCOM.2008.11.074.
  22. Hao K, Wang X, Zhou L, et al. Design of one-dimensional composite photonic crystal with high infrared reflectivity and low microwave reflectivity. Optik 2020; 216: 164794. DOI: 10.1016/j.ijleo.2020.164794.
  23. Bykov DA, Doskolovich LL, Bezus EA, Soifer VA. Optical computation of the Laplace operator using phase-shifted Bragg grating. Opt Express 2014; 22(21): 25084-25092. DOI: 10.1364/OE.22.025084.
  24. Doskolovich LL, Bykov DA, Bezus EA, Soifer VA. Spatial differentiation of optical beams using phase-shifted Bragg grating. Opt Lett 2014; 39(5): 1278-1281. DOI: 10.1364/OL.39.001278.
  25. Zhan T, Liu QS, Sun YJ, Qiu L, Wen T, Zhang R. A general machine learning-based approach for inverse design of one-dimensional photonic crystals toward targeted visible light reflection spectrum. Opt Commun 2022; 510: 127920. DOI: 10.1016/J.OPTCOM.2022.127920.
  26. Chen Y, Lan Z, Su Z, Zhu J. Inverse design of photonic and phononic topological insulators: A review. Nanophotonics 2022; 11: 4347-4362. DOI: 10.1515/NANOPH-2022-0309.
  27. Emel'yantsev PS, Pyshkov NI, Svyakhovskii SE. Construction of the structure of a one-dimensional photonic crystal from a given reflectance spectrum. Pis'ma v Zh Èksper Teoret Fiz 2023; 117: 826-831. DOI: 10.31857/S1234567823110058.
  28. Barry MA, Berthier V, Wilts BD, Cambourieux MC, Bennet P, Pollès R, Teytaud O, Centeno E, Biais N, Moreau A. Evolutionary algorithms converge towards evolved biological photonic structures. Sci Rep 2020; 10: 12024. DOI: 10.1038/s41598-020-68719-3.
  29. Romanova VA, Matyushkin LB, Moshnikov VA. One-dimensional photonic SiO2–TiO2 crystals: Simulation and synthesis by sol–gel technology methods. Glas Phys Chem 2018; 44: 7-14. DOI: 10.1134/S1087659618010108.
  30. Valligatla S, Chiasera A, Varas S, Bazzanella N, Rao DN, Righini GC, Ferrari M. High quality factor 1-D Er3+-activated dielectric microcavity fabricated by RF-sputtering. Opt Express 2012; 20(19): 21214-21222. DOI: 10.1364/OE.20.021214.
  31. Garcia-Sanchez S, Iniguez-De-La-Torre I, Perez S, Gonzalez T, Mateos J. Optimization of the epilayer design for the fabrication of doped GaN planar Gunn diodes. IEEE Trans Electron Devices 2022; 69: 514-520. DOI: 10.1109/TED.2021.3134927.
  32. Bellingeri M, Chiasera A, Kriegel I, Scotognella F. Optical properties of periodic, quasi-periodic, and disordered one-dimensional photonic structures. Opt Mater 2017; 72: 403-421. DOI: 10.1016/j.optmat.2017.06.033.
  33. Kłos JW, Krawczyk M, Dadoenkova YS, Dadoenkova NN, Lyubchanskii IL. Photonic-magnonic crystals: Multifunctional periodic structures for magnonic and photonic applications. J Appl Phys 2014; 115: 174311. DOI: 10.1063/1.4874797.
  34. Kłos JW, Lyubchanskii IL, Krawczyk M, Gruszecki P, Mieszczak S, Rychły J, Dadoenkova YS, Dadoenkova NN. Magnonics and confinement of light in photonic-magnonic crystals. In Book: Almpanis E, ed. Optomagnonic structures. Novel architectures for simultaneous control of light and spin waves. Ch 2. World Scientific Publishing Co; 2021: 79-134. DOI: 10.1142/9789811220050_0002.
  35. Narimanov EE. Photonic hypercrystals. Phys Rev X 2014; 4: 1-13. DOI: 10.1103/PhysRevX.4.041014.
  36. Smolyaninova VN, Yost B, Lahneman D, Narimanov EE, Smolyaninov II. Self-assembled tunable photonic hyper-crystals. Sci Rep 2015; 4: 5706. DOI: 10.1038/srep05706.
  37. Zhukovsky SV, Orlov AA, Babicheva VE, Lavrinenko AV, Sipe JE. Photonic-band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials. Phys Rev A – At Mol Opt Phys 2014; 90: 013801. DOI: 10.1103/PhysRevA.90.013801.
  38. Chebykin AV, Babicheva VE, Iorsh IV, Orlov AA, Belov PA, Zhukovsky SV. Enhancement of the Purcell factor in multiperiodic hyperboliclike metamaterials. Phys Rev A 2016; 93: 033855. DOI: 10.1103/PhysRevA.93.033855.
  39. Wu F, Lyu K, Hu S, Yao M, Xiao S. Ultra-large omnidirectional photonic band gaps in one-dimensional ternary photonic crystals composed of plasma, dielectric and hyperbolic metamaterial. Opt Mater 2021; 111: 110680. DOI: 10.1016/J.OPTMAT.2020.110680.
  40. Dadoenkova NN, Dadoenkova YS, Panyaev IS, Sannikov DG, Lyubchanskii IL. One-dimensional dielectric bi-periodic photonic structures based on ternary photonic crystals. J Appl Phys 2018; 123: 043101. DOI: 10.1063/1.5011637.
  41. El-Amassi DM, Taya SA, Vigneswaran D. Temperature sensor utilizing a ternary photonic crystal with a polymer layer sandwiched between Si and SiO2 layers. J Theor Appl Phys 2018; 12: 293-298. DOI: 10.1007/s40094-018-0308-x.
  42. Wu J, Gao J. Analysis of temperature-dependent optical properties in 1D ternary superconducting photonic crystal with mirror symmetry. J Supercond Nov Magn 2015; 28: 1971-1976. DOI: 10.1007/s10948-015-3002-0.
  43. Lo SM, Hu S, Gaur G, Kostoulas Y, Weiss SM, Fauchet PM. Photonic crystal microring resonator for label-free biosensing. Opt Express 2017; 25(6): 7046-7054. DOI: 10.1364/oe.25.007046.
  44. Aminifard SM, Sovizi M. Simulation of transmitted spectrum in metallic photonic crystals by boundary element method. Opt Commun 2014; 322: 1-7. DOI: 10.1016/j.optcom.2014.01.086.
  45. Girich A, Kharchenko A, Tarapov S. Spectral features of a multi-periodical metamaterials. 2019 IEEE 8th Int Conf on Advanced Optoelectronics and Lasers (CAOL) 2019: 408-411. DOI: 10.1109/CAOL46282.2019.9019522.
  46. Saeidi FS, Moradi M. A new route to designing a one-dimensional multiperiodic photonic crystal with adjustable photonic band gap and enhanced electric field localization. Opt Commun 2021; 493: 126999. DOI: 10.1016/J.OPTCOM.2021.126999.
  47. Panyaev IS, Yafarova LR, Sannikov DG, Dadoenkova NN, Dadoenkova YS, Lyubchanskii IL. One-dimensional multiperiodic photonic structures: A new route in photonics (four-component media). J Appl Phys 2019; 126: 103102. DOI: 10.1063/1.5115829.
  48. Panyaev IS, Sannikov DG, Dadoenkova NN, Dadoenkova YS. Energy flux optimization in 1D multiperiodic four-component photonic crystals. Opt Commun 2021; 489: 126875. DOI: 10.1016/j.optcom.2021.126875.
  49. Panyaev IS, Sannikov DG, Dadoenkova NN, Dadoenkova YS. Three-periodic 1D photonic crystals for designing the photonic optical devices operating in the infrared regime. Appl Opt 2021; 60: 1943-1952. DOI: 10.1364/ao.415966.
  50. Belotelov VI, Zvezdin AK. Photonic crystals and other metamaterials [In Russian]. Moscow: “Buro Kvantum” Publisher; 2006.
  51. Berreman DW. Optics in stratified and anisotropic media: 4x4-Matrix formulation. J Opt Soc Am 1972; 62: 502-510. DOI: 10.1364/JOSA.62.000502.
  52. Panyaev IS, Sannikov DG, Dadoenkova YS, Dadoenkova NN. Multiperiodic photonic crystals for ultrasensitive temperature monitoring and polarization switching. IEEE Sens J 2022; 22: 22428-22437. DOI: 10.1109/JSEN.2022.3217117..

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20