(48-4) 13 * << * >> * Русский * English * Содержание * Все выпуски

Neural network recognition system for video transmitted through a binary symmetric channel
V.A. Baboshina 1, A.R. Orazaev 1, P.A. Lyakhov 1,2, E.E. Boyarskaya 2

North-Caucasus Center for Mathematical Research, North-Caucasus Federal University,
355017 Stavropol, Russia, Pushkin st. 1;
Department of Mathematical Modeling, North-Caucasus Federal University,
355017 Stavropol, Russia, Pushkin st. 1

  PDF, 61 MB

DOI: 10.18287/2412-6179-CO-1388

Страницы: 582-591.

Язык статьи: English.

Аннотация:
The demand for transmitting video data is increasing annually, necessitating the use of high-quality equipment for reception and processing. The paper presents a neural network recognition system for videos transmitted via a binary symmetrical channel. The presence of digital noise in the data makes it challenging to recognize objects in videos even with advanced neural networks. The proposed system consists of a noise interference detector, a noise purification system based on an adaptive median filter, and a neural network for recognition. The experiment results demonstrate that the proposed system effectively reduces video noise and accurately identifies multiple objects. This versatility makes the system applicable in various fields such as medicine, life safety, physics, and chemistry. The direction of further research may be to improve the model neural network, increasing the database for training or using other noises for modeling.

Ключевые слова:
neural networks, video recognition, YOLO, binary symmetric channel, video denoise.

Благодарности
The research in Section “Experimental modeling of recognition system for noised video” was supported by the North-Caucasus Center for Mathematical Research under agreement number 075-02-2023-938 with the Ministry of Science and Higher Education of the Russian Federation. The rest of the paper was funded by the Russian Science Foundation (Project No. 23-71-10013).

Citation:
Baboshina VA, Orazaev AR, Lyakhov PA, Boyarskaya EE. Neural network recognition system for video transmitted through a binary symmetric channel. Computer Optics 2024; 48(4): 582-591. DOI: 10.18287/2412-6179-CO-1388.

References:

  1. Samothai P, Sanguansat P, Kheaksong A, Srisomboon K, Lee W. The evaluation of bone fracture detection of YOLO series. ITC-CSCC 2022 – 37th Int Technical Conf on Circuits/Systems, Computers and Communications 2022: 1054-1057. DOI: 10.1109/ITC-CSCC55581.2022.9895016.
  2. Ma Y, Yang J, Li Z, Ma Z. YOLO-Cigarette: An effective YOLO Network for outdoor smoking real-time object detection. 2021 9th Int Conf on Advanced Cloud and Big Data (CBD 2021) 2022: 121-126. DOI: 10.1109/CBD54617.2021.00029.
  3. Poon YS, Lin CC, Liu YH, Fan CP. YOLO-based deep learning design for in-cabin monitoring system with fisheye-lens camera. IEEE Int Conf on Consumer Electronics 2022: DOI: 10.1109/ICCE53296.2022.9730235.
  4. Yijing W, Yi Y, Xue-Fen W, Jian C, Xinyun L. Fig fruit recognition method based on YOLO v4 deep learning. 18th Int Conf on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) 2021: 303-306. DOI: 10.1109/ECTI-CON51831.2021.9454904.
  5. Liu L, Zhou B, Liu G, Lian D, Zhang R. Yolo-based multi-model ensemble for plastic waste detection along railway lines. Int Geoscience and Remote Sensing Symposium (IGARSS) 2022: 7658-7661. DOI: 10.1109/IGARSS46834.2022.9883308.
  6. Alanazi TM, Berriri K, Albekairi M, Ben Atitallah A, Sahbani A, Kaaniche K. New real-time high-density impulsive noise removal method applied to medical images. Diagnostics 2023; 13: 1709. DOI: 10.3390/DIAGNOSTICS13101709.
  7. Kumain SC, Singh M, Govil MC, Pilli ES. An efficient salt and pepper noise reduction approach for video(s) using optimized filter approach. 2nd Int Conf on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET 2022) 2022. DOI: 10.1109/ICEFEET51821.2022.9847916.
  8. Xiong R, Wu F, Xu J, Fan X, Luo C, Gao W. Analysis of decorrelation transform gain for uncoded wireless image and video communication. IEEE Trans Image Process 2016; 25: 1820-1833. DOI: 10.1109/TIP.2016.2535288.
  9. Jakubczak S, Katabi D. A cross-layer design for scalable mobile video. Proc Annual Int Conf on Mobile Computing and Networking (MOBICOM) 2011: 289-300. DOI: 10.1145/2030613.2030646.
  10. He C, Hu Y, Chen Y, Fan X, Li H, Zeng B. MUcast: Linear uncoded multiuser video streaming with channel assignment and power allocation optimization. IEEE Trans Circuits Syst Video Technol 2020; 30: 1136-1146. DOI: 10.1109/TCSVT.2019.2897649.
  11. Khan K, Goodridge W. Fault tolerant multi-criteria multi-path routing in wireless sensor networks. Int J Intell Syst Appl 2015; 7: 55-63. DOI: 10.5815/IJISA.2015.06.06.
  12. Wajgi DW, Tembhurne JV. Localization in wireless sensor networks and wireless multimedia sensor networks using clustering techniques. Multimed Tools Appl 2024; 83: 6829-6879. DOI: 10.1007/S11042-023-15956-Z.
  13. Khudhair AB, Ghani RF. IoT based smart video surveillance system using convolutional neural network. Proc 6th Int Engineering Conf “Sustainable Technology and Development” (IEC 2020) 2020: 163-168. DOI: 10.1109/IEC49899.2020.9122901.
  14. Danko D, Mercan S, Cebe M, Akkaya K. Assuring the integrity of videos from wireless-based IoT devices using blockchain. IEEE 16th Int Conf on Mobile Ad Hoc and Smart Systems Workshops (MASSW 2019) 2019: 48-52. DOI: 10.1109/MASSW.2019.00016.
  15. Ababzadeh R, Khansari M. On the unequal error protection in compressive video sensing for low power and lossy IoT networks. 4th Int Conf on Smart Cities, Internet of Things and Applications (SCIoT 2020) 2020: 52-57. DOI: 10.1109/SCIOT50840.2020.9250205.
  16. Kang S, Ji W, Rho S, Anu Padigala V, Chen Y. Cooperative mobile video transmission for traffic surveillance in smart cities. Comput Electr Eng 2016; 54: 16-25. DOI: 10.1016/J.COMPELECENG.2016.06.013.
  17. Tian L, Wang H, Zhou Y, Peng C. Video big data in smart city: Background construction and optimization for surveillance video processing. Future Gener Comput Syst 2018; 86: 1371-1382. DOI: 10.1016/J.FUTURE.2017.12.065.
  18. Belyaev EA, Turlikov AM. Rate-distortion control in video compression and transmission system with memory restriction on transmitter and receiver side. Computer Optics 2007; 31(2): 69-76.
  19. Wang T, Zheng Z, Lin Y, Yao S, Xie X. Reliable and robust unmanned aerial vehicle wireless video transmission. IEEE Trans Reliab 2018; 68(3): 1050-1060. DOI: 10.1109/TR.2018.2864683.
  20. Garnett R, Huegerich T, Chui C, He W. A universal noise removal algorithm with an impulse detector. IEEE Trans Image Process 2005; 14: 1747-1754. DOI: 10.1109/TIP.2005.857261.
  21. Tomasi C, Manduchi R. Bilateral filtering for gray and color images. Proc IEEE Int Conf on Computer Vision 1998: 839-846. DOI: 10.1109/ICCV.1998.710815.
  22. Dong Y, Chan RH, Xu S. A detection statistic for random-valued impulse noise. IEEE Trans Image Process 2007; 16: 1112-1120. DOI: 10.1109/TIP.2006.891348.
  23. Xiao X, Xiong NN, Lai J, Wang CD, Sun Z, Yan J. A local consensus index scheme for random-valued impulse noise detection systems. IEEE Trans Syst Man Cybern Syst 2021; 51: 3412-3428. DOI: 10.1109/TSMC.2019.2925886.
  24. Lyakhov PA, Orazaev AR. New method for detecting and removing random-valued impulse noise from images. Computer Optics 2023; 47(2): 262-271. DOI: 10.18287/2412-6179-CO-1145.
  25. Orazaev A, Lyakhov P, Baboshina V, Kalita D. Neural network system for recognizing images affected by random-valued impulse noise. Appl Sci 2023; 13(3): 1585. DOI: 10.3390/app13031585.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20