(48-4) 14 * << * >> * Русский * English * Содержание * Все выпуски
  
YOLO-Barcode: towards universal real-time barcode detection on mobile devices
 D.M. Ershova 1,2, A.V. Gayer 1,3, P.V. Bezmaternykh 1,3, V.V. Arlazarov 1,3
 1 Smart Engines Service LLC, 117312, Russia, Moscow, Prospect 60-Letiya Oktyabrya 9;
     2 Moscow Institute of Physics and Technology,
     141701, Russia, Moscow Region, Dolgoprudny, Institutskiy per. 9;
     3 Federal Research Center “Computer Science and Control” of RAS,
     119333, Moscow, Russia, Vavilova str. 44, corp. 2
 
 PDF, 4042 kB
  PDF, 4042 kB
DOI: 10.18287/2412-6179-CO-1424
Страницы: 592-600.
Язык статьи: English.
 
Аннотация:
 
Existing  approaches to barcode detection have a number of disadvantages, including being  tied to specific types of barcodes, computational complexity or low detection  accuracy. In this paper, we propose YOLO-Barcode – a deep learning model  inspired by the You Only Look Once approach that allows to achieve high  detection accuracy with real-time performance on mobile devices. The proposed  model copes well with a large number of densely spaced barcodes, as well as  highly elongated one-dimensional barcodes. YOLO-Barcode not only successfully  detects the huge variety of barcode types, but also classifies them. Comparing  with the previous universal barcode detector DilatedModel based on semantic  segmentation, the YOLO-Barcode is 4 times faster and achieves state-of-the-art  accuracy on the ZVZ-real public dataset: 98.6% versus 88.9%  by F1-score. The analysis of existing publicly available datasets reveals the  absence of many real-life scenarios of mobile barcode reading. To fill this  gap, the new “SE-barcode” dataset is presented. The proposed model, used as a  baseline, achieves a 92.11% by F1-score on this dataset.
Ключевые слова:
barcode  detection, barcode dataset, object detection, convolutional neural networks,  deep learning.
Citation:
Ershova  DM, Gayer AV, Bezmaternykh PV, Arlazarov VV. YOLO-Barcode: towards universal  real-time barcode detection on mobile devices. Computer Optics 2024; 48(4): 592-600.  DOI: 10.18287/2412-6179-CO-1424.
References:
  - Arlazarov VV, Zhukovsky  A, Krivtsov V, Nikolaev D, Polevoy D. Analysis of using stationary and mobile  small-scale digital video cameras for document recognition [In Russian].  Information Technologies and Computation Systems 2014; (3): 71-78.
 
- Wachenfeld S, Terlunen  S, Jiang X. Robust recognition of 1-D barcodes using camera phones. 2008 19th  Int Conf on Pattern Recognition 2008: 1-4. DOI: 10.1109/ICPR.2008.4761085.
 
- Zamberletti A, Gallo  I, Albertini S. Robust angle invariant 1D barcode  detection. 2013 2nd IAPR Asian Conf on Pattern Recognition 2013: 160-164. DOI:  10.1109/ACPR.2013.17.
 
- Chai  D, Hock F. Locating and decoding EAN-13 barcodes from images captured by  digital cameras. 2005 5th Int Conf on Information Communications and Signal  Processing 2005: 1595-1599. DOI: 10.1109/ICICS.2005.1689328.
 
- Chen  C, He B, ZhangL, Yan P-Q. Autonomous recognition system for barcode detection  in complex scenes. ITM Web of Conferences 2017; 12: 04016. DOI:  10.1051/itmconf/20171204016.
 
- Katona  M, Nyúl LG. Efficient 1D and 2D barcode detection using mathematical  morphology. In Book: Hendriks CLL, Borgefors G, Strand R, eds. Mathematical  morphology and its applications to signal and image processing. Berlin, Heidelberg:  Springer-Verlag; 2013: 464-475. DOI: 10.1007/978-3-642-38294-9_39.
 
- Bodnár P, Nyúl  L. Barcode detection using local analysis, mathematical morphology, and  clustering. Acta Cybernetica 2013; 21(1): 21-35. DOI:  10.14232/actacyb.21.1.2013.3.
 
- Bodnár  P, Nyúl LG. Barcode detection with uniform partitioning and distance  transformation. Proc 14th IASTED Int Conf on Computer Graphics and Imaging  (CGIM 2013) 2013; 48-53. DOI: 10.2316/P.2013.797-022.
 
- Yang  H, Kot AC, Jiang X. Binarization of low-quality barcode images captured by  mobile phones using local window of adaptive location and size. IEEE Trans  Image Process 2012; 21(1): 418-425. DOI: 10.1109/TIP.2011.2155074.
 
- Chen  R, Yu Y, Xu X, Wang L, Zhao H, Tan HZ. Adaptive binarization of QR code images  for fast automatic sorting in warehouse systems. Sensors 2019; 19(24): 5466.  DOI: 10.3390/s19245466.
 
- Usilin  SA, Bezmaternykh PV, Arlazarov VV. Fast approach for QR code localization on  images using Viola-Jones method. Proc SPIE 2020; 11433: 114333G. DOI:  10.1117/12.2559386.
 
- Kruchinin  AY. Industrial datamatrix barcode recognition with random tilt and rotate the  camera. Computer Optics 2014; 38(4): 856-864. DOI:  10.18287/0134-2452-2014-38-4-865-870.
 
- Li JH, Wang WH,  Rao TT, Zhu WB, Liu CJ. Morphological segmentation of 2-D barcode gray scale  image. Int Conf on Information System and Artificial Intelligence (ISAI 2016)  2017: 62-68. DOI: 10.1109/ISAI.2016.0022 
 
- Krešić-Jurić S.  Analysis of edge detection in bar code symbols: An overview and open problem. J  Appl Mathematics 2012; 2012: 758657. DOI: 10.1155/2012/758657.
 
- Redmon  J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time  object detection. 2016 IEEE Conf on Computer Vision and Pattern Recognition  (CVPR) 2016; 779-788. DOI: 10.1109/CVPR.2016.91.
 
- Wudhikarn  R, Charoenkwan P, Malang K. Deep learning in barcode recognition: a systematic  literature review. IEEE Access 2022; 10: 8049-8072. DOI:  10.1109/ACCESS.2022.3143033.
 
- Bochkovskiy  A, Wang C, Liao HM. YOLOv4: Optimal speed and accuracy of object detection.  arXiv Preprint. 2020. Source: <https://arxiv.org/abs/2004.10934>.
 
- ultralytics/yolov5.  2024. Source:     <https://github.com/ultralytics/yolov5>.
 
- Hansen D,  Nasrollahi K, Rasmusen C, Moeslund T. Real-time barcode detection and  classification using deep learning. Proc 9th Int Joint Conf on Computational  Intelligence 2017: 321-327. DOI: 10.5220/0006508203210327.
 
- Hussain  N, Finelli C. KP-YOLO: A modification of YOLO algorithm for the keypoint-based  detection of QR codes. In Book: Schilling F-P, Stadelmann T, eds. Artificial  neural networks in pattern recognition. Cham: Springer Nature Switzerland AG;  2020: 211-222. DOI: 10.1007/978-3-030-58309-5_17.
 
- Zhang  L, Sui Y, Zhu F, Zhu M, He B, Deng Z. Fast barcode detection method based on  thinYOLOv4. In Book: Sun F, Liu H, Fang B, eds. Cognitive systems and signal  processing (ICCSIP 2020). Singapore:  Springer; 2021: 41-55. DOI: 10.1007/978-981-16-2336-3_4.
 
- Zharkov  A, Zagaynov I. Universal barcode detector via semantic segmentation. 2019 Int  Conf on Document Analysis and Recognition (ICDAR) 2019: 837-843. DOI:  10.1109/ICDAR.2019.00139.
 
- Quenum  J, Wang K, Zakhor A. Fast, accurate barcode detection in ultra high-resolution  images. IEEE Int Conf on Image Processing (ICIP) 2021: 1019-1023. DOI:  10.1109/ICIP42928.2021.9506134.
 
- Zharkov  A, Vavilin A, Zagaynov I. New benchmarks for barcode detection using both  synthetic and real data. In Book: Bai X, Karatzas D, Lopresti D, eds. Document  analysis systems (DAS 2020). Cham: Springer; 2020: 481-493. DOI:  10.1007/978-3-030-57058-3_34.
 
- Redmon  J, Farhadi A. YOLOv3: An incremental improvement. arXiv Preprint. 2018. Source:  <http://arxiv.org/abs/1804.02767>.
 
- Wang  C-Y, Bochkovskiy A, Liao H-YM. YOLOv7: Trainable bag-of-freebies sets new  state-of-the-art for real-time object detectors. arXiv Preprint. 2022. Source:  <https://arxiv.org/abs/2207.02696>.
 
- Lin T-Y, Dollar  P, Girshick R, He K, Hariharan B, Belongie S. Feature pyramid networks for  object detection. 2017 IEEE Conf on Computer Vision and Pattern Recognition  (CVPR) 2017: 936-944. DOI: 10.1109/CVPR.2017.106.
 
- Gayer  AV, Chernyshova YS, Sheshkus AV. Effective real-time augmentation of training  dataset for the neural networks learning. Proc SPIE 2019; 11041: 110411I. DOI:  10.1117/12.2522969. 
- Kamnardsiri T, Charoenkwan P, Malang C, Wudhikarn  R. 1D barcode detection: Novel benchmark datasets and comprehensive comparison  of deep convolutional neural network approaches. Sensors 2022; 22(22): 8788.  DOI: 10.3390/s22228788.
  
  © 2009, IPSI RAS
    Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7  (846)  242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический  редактор), факс: +7 (846) 332-56-20