(48-4) 14 * << * >> * Русский * English * Содержание * Все выпуски
YOLO-Barcode: towards universal real-time barcode detection on mobile devices
D.M. Ershova 1,2, A.V. Gayer 1,3, P.V. Bezmaternykh 1,3, V.V. Arlazarov 1,3
1 Smart Engines Service LLC, 117312, Russia, Moscow, Prospect 60-Letiya Oktyabrya 9;
2 Moscow Institute of Physics and Technology,
141701, Russia, Moscow Region, Dolgoprudny, Institutskiy per. 9;
3 Federal Research Center “Computer Science and Control” of RAS,
119333, Moscow, Russia, Vavilova str. 44, corp. 2
PDF, 4042 kB
DOI: 10.18287/2412-6179-CO-1424
Страницы: 592-600.
Язык статьи: English.
Аннотация:
Existing approaches to barcode detection have a number of disadvantages, including being tied to specific types of barcodes, computational complexity or low detection accuracy. In this paper, we propose YOLO-Barcode – a deep learning model inspired by the You Only Look Once approach that allows to achieve high detection accuracy with real-time performance on mobile devices. The proposed model copes well with a large number of densely spaced barcodes, as well as highly elongated one-dimensional barcodes. YOLO-Barcode not only successfully detects the huge variety of barcode types, but also classifies them. Comparing with the previous universal barcode detector DilatedModel based on semantic segmentation, the YOLO-Barcode is 4 times faster and achieves state-of-the-art accuracy on the ZVZ-real public dataset: 98.6% versus 88.9% by F1-score. The analysis of existing publicly available datasets reveals the absence of many real-life scenarios of mobile barcode reading. To fill this gap, the new “SE-barcode” dataset is presented. The proposed model, used as a baseline, achieves a 92.11% by F1-score on this dataset.
Ключевые слова:
barcode detection, barcode dataset, object detection, convolutional neural networks, deep learning.
Citation:
Ershova DM, Gayer AV, Bezmaternykh PV, Arlazarov VV. YOLO-Barcode: towards universal real-time barcode detection on mobile devices. Computer Optics 2024; 48(4): 592-600. DOI: 10.18287/2412-6179-CO-1424.
References:
- Arlazarov VV, Zhukovsky A, Krivtsov V, Nikolaev D, Polevoy D. Analysis of using stationary and mobile small-scale digital video cameras for document recognition [In Russian]. Information Technologies and Computation Systems 2014; (3): 71-78.
- Wachenfeld S, Terlunen S, Jiang X. Robust recognition of 1-D barcodes using camera phones. 2008 19th Int Conf on Pattern Recognition 2008: 1-4. DOI: 10.1109/ICPR.2008.4761085.
- Zamberletti A, Gallo I, Albertini S. Robust angle invariant 1D barcode detection. 2013 2nd IAPR Asian Conf on Pattern Recognition 2013: 160-164. DOI: 10.1109/ACPR.2013.17.
- Chai D, Hock F. Locating and decoding EAN-13 barcodes from images captured by digital cameras. 2005 5th Int Conf on Information Communications and Signal Processing 2005: 1595-1599. DOI: 10.1109/ICICS.2005.1689328.
- Chen C, He B, ZhangL, Yan P-Q. Autonomous recognition system for barcode detection in complex scenes. ITM Web of Conferences 2017; 12: 04016. DOI: 10.1051/itmconf/20171204016.
- Katona M, Nyúl LG. Efficient 1D and 2D barcode detection using mathematical morphology. In Book: Hendriks CLL, Borgefors G, Strand R, eds. Mathematical morphology and its applications to signal and image processing. Berlin, Heidelberg: Springer-Verlag; 2013: 464-475. DOI: 10.1007/978-3-642-38294-9_39.
- Bodnár P, Nyúl L. Barcode detection using local analysis, mathematical morphology, and clustering. Acta Cybernetica 2013; 21(1): 21-35. DOI: 10.14232/actacyb.21.1.2013.3.
- Bodnár P, Nyúl LG. Barcode detection with uniform partitioning and distance transformation. Proc 14th IASTED Int Conf on Computer Graphics and Imaging (CGIM 2013) 2013; 48-53. DOI: 10.2316/P.2013.797-022.
- Yang H, Kot AC, Jiang X. Binarization of low-quality barcode images captured by mobile phones using local window of adaptive location and size. IEEE Trans Image Process 2012; 21(1): 418-425. DOI: 10.1109/TIP.2011.2155074.
- Chen R, Yu Y, Xu X, Wang L, Zhao H, Tan HZ. Adaptive binarization of QR code images for fast automatic sorting in warehouse systems. Sensors 2019; 19(24): 5466. DOI: 10.3390/s19245466.
- Usilin SA, Bezmaternykh PV, Arlazarov VV. Fast approach for QR code localization on images using Viola-Jones method. Proc SPIE 2020; 11433: 114333G. DOI: 10.1117/12.2559386.
- Kruchinin AY. Industrial datamatrix barcode recognition with random tilt and rotate the camera. Computer Optics 2014; 38(4): 856-864. DOI: 10.18287/0134-2452-2014-38-4-865-870.
- Li JH, Wang WH, Rao TT, Zhu WB, Liu CJ. Morphological segmentation of 2-D barcode gray scale image. Int Conf on Information System and Artificial Intelligence (ISAI 2016) 2017: 62-68. DOI: 10.1109/ISAI.2016.0022
- Krešić-Jurić S. Analysis of edge detection in bar code symbols: An overview and open problem. J Appl Mathematics 2012; 2012: 758657. DOI: 10.1155/2012/758657.
- Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time object detection. 2016 IEEE Conf on Computer Vision and Pattern Recognition (CVPR) 2016; 779-788. DOI: 10.1109/CVPR.2016.91.
- Wudhikarn R, Charoenkwan P, Malang K. Deep learning in barcode recognition: a systematic literature review. IEEE Access 2022; 10: 8049-8072. DOI: 10.1109/ACCESS.2022.3143033.
- Bochkovskiy A, Wang C, Liao HM. YOLOv4: Optimal speed and accuracy of object detection. arXiv Preprint. 2020. Source: <https://arxiv.org/abs/2004.10934>.
- ultralytics/yolov5. 2024. Source: <https://github.com/ultralytics/yolov5>.
- Hansen D, Nasrollahi K, Rasmusen C, Moeslund T. Real-time barcode detection and classification using deep learning. Proc 9th Int Joint Conf on Computational Intelligence 2017: 321-327. DOI: 10.5220/0006508203210327.
- Hussain N, Finelli C. KP-YOLO: A modification of YOLO algorithm for the keypoint-based detection of QR codes. In Book: Schilling F-P, Stadelmann T, eds. Artificial neural networks in pattern recognition. Cham: Springer Nature Switzerland AG; 2020: 211-222. DOI: 10.1007/978-3-030-58309-5_17.
- Zhang L, Sui Y, Zhu F, Zhu M, He B, Deng Z. Fast barcode detection method based on thinYOLOv4. In Book: Sun F, Liu H, Fang B, eds. Cognitive systems and signal processing (ICCSIP 2020). Singapore: Springer; 2021: 41-55. DOI: 10.1007/978-981-16-2336-3_4.
- Zharkov A, Zagaynov I. Universal barcode detector via semantic segmentation. 2019 Int Conf on Document Analysis and Recognition (ICDAR) 2019: 837-843. DOI: 10.1109/ICDAR.2019.00139.
- Quenum J, Wang K, Zakhor A. Fast, accurate barcode detection in ultra high-resolution images. IEEE Int Conf on Image Processing (ICIP) 2021: 1019-1023. DOI: 10.1109/ICIP42928.2021.9506134.
- Zharkov A, Vavilin A, Zagaynov I. New benchmarks for barcode detection using both synthetic and real data. In Book: Bai X, Karatzas D, Lopresti D, eds. Document analysis systems (DAS 2020). Cham: Springer; 2020: 481-493. DOI: 10.1007/978-3-030-57058-3_34.
- Redmon J, Farhadi A. YOLOv3: An incremental improvement. arXiv Preprint. 2018. Source: <http://arxiv.org/abs/1804.02767>.
- Wang C-Y, Bochkovskiy A, Liao H-YM. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv Preprint. 2022. Source: <https://arxiv.org/abs/2207.02696>.
- Lin T-Y, Dollar P, Girshick R, He K, Hariharan B, Belongie S. Feature pyramid networks for object detection. 2017 IEEE Conf on Computer Vision and Pattern Recognition (CVPR) 2017: 936-944. DOI: 10.1109/CVPR.2017.106.
- Gayer AV, Chernyshova YS, Sheshkus AV. Effective real-time augmentation of training dataset for the neural networks learning. Proc SPIE 2019; 11041: 110411I. DOI: 10.1117/12.2522969.
- Kamnardsiri T, Charoenkwan P, Malang C, Wudhikarn R. 1D barcode detection: Novel benchmark datasets and comprehensive comparison of deep convolutional neural network approaches. Sensors 2022; 22(22): 8788. DOI: 10.3390/s22228788.
© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20