(48-5) 04 * << * >> * Русский * English * Содержание * Все выпуски

Модель распространения световой пули в кристалле LiF
А.В. Кузнецов 1

Иркутский филиал ФГБУН Института лазерной физики СО РАН,
664033, Россия, г. Иркутск, ул. Лермонтова, д. 130а

  PDF, 1031 kB

DOI: 10.18287/2412-6179-CO-1419

Страницы: 669-675.

Аннотация:
Построена модель распространения световой пули в кристалле LiF и формирования трека пули, состоящего из центров окраски. Модель воспроизводит наблюдавшиеся ранее продольные периодические колебания концентрации центров окраски в треке. Кроме того, модель впервые воспроизводит экспериментально наблюдаемые периодические колебания ширины трека. Относительный сдвиг между указанными колебаниями по результатам моделирования соответствует экспериментальным наблюдениям.

Ключевые слова:
световая пуля, филаментация, центр окраски, LiF, FDTD.

Благодарности
Работа поддержана научным проектом 0243-2021-0004 в рамках плана фундаментальных исследований Российской академии наук на период до 2025 года.

Цитирование:
Кузнецов, А.В. Модель распространения световой пули в кристалле LiF / А.В. Кузнецов // Компьютерная оптика. – 2024. – Т. 48, № 5. – С. 669-675. – DOI: 10.18287/2412-6179-CO-1419.

Citation:
Kuznetsov AV. Model of light bullet propagation in LiF crystal. Computer Optics 2024; 48(5): 669-675. DOI: 10.18287/2412-6179-CO-1419.

References:

  1. Boyd RW. Nonlinear optics. 4th ed. London: Academic Press; 2020. ISBN: 978-0-12-811002-7.
  2. Silberberg Y. Collapse of optical pulses. Opt Lett 1990; 15(22): 1282-1284. DOI: 10.1364/OL.15.001282.
  3. Martynovich EF, Dresvyansky VP, Rakevich AL, Lazareva NL, MA Arsentieva MA, Tyutrin AA, Bukhtsoozh O, Enkhbat S, Kostryukov PV, Perminov BE, Konyashchenko AV. Creating of luminescent defects in crystalline media by a scanning laser beam. Appl Phys Lett 2019; 114(12): 121901. DOI: 10.1063/1.5087688.
  4. Chekalin SV, Kompanets VO, Kuznetsov AV, Dormidonov AE, Kandidov VP. Regular ’breathing’ of a near-single-cycle light bullet in mid-IR filament. Laser Phys Lett 2016; 13(6): 065401. DOI: 10.1088/1612-2011/13/6/065401.
  5. Kuznetsov AV, Kompanets VO, Dormidonov AE, Chekalin SV, Shlenov SA, Kandidov VP. Periodic colour-centre structure formed under filamentation of mid-IR femtosecond laser radiation in a LiF crystal. Quantum Electron 2016; 46(4): 379-386. DOI: 10.1070/QEL16038.
  6. Zaloznaya ED, Dormidonov AE, Kompanets VO, Chekalin SV, Kandidov VP. Material dispersion effect on the oscillations of a single-cycle wave packet. Optics Spectrosc 2022; 130(12): 1596. DOI: 10.21883/EOS.2022.12.55248.3933-22.
  7. Zaloznaya E, Kompanets V, Savvin A, Dormidonov A, Chekalin S, Kandidov V. Carrier-envelope phase effect on light bullet dynamics. Laser Phys Lett 2022; 19(7): 075402. DOI: 10.1088/1612-202X/ac7134.
  8. Zhang S, Tripepi M, AlShafey A, Talisa N, Nguyen HT, Reagan BA, Sistrunk E, Gibson DJ, Alessi DA, Chowdhury EA. Femtosecond damage experiments and modeling of broadband mid-infrared dielectric diffraction gratings. Opt Express 2021; 29(24): 39983-39999. DOI: 10.1364/OE.439895.
  9. Mahdy A. Numerical simulation for the efficiency of the produced terahertz radiation by two femtosecond laser pulses: Above-threshold-ionization. Journal of Applied Mathematics and Physics 2023; 11(10): 2997-3008. DOI: 10.4236/jamp.2023.1110198.
  10. Tyrrell JCA, Kinsler P, New GHC. Pseudospectral spatial- domain: a new method for nonlinear pulse propagation in the few-cycle regime with arbitrary dispersion. J Mod Opt 2005; 52(7): 973-986. DOI: 10.1080/09500340512331334086.
  11. Bourgeade A, Mezel C, Saut O. Modeling the early ionization of dielectrics by ultrashort laser pulses. J Sci Comput 2010; 44: 170-190. DOI: 10.1007/s10915-010-9375-0.
  12. Schmitz H, Mezentsev V. Full-vectorial modeling of femtosecond pulses for laser inscription of photonic structures. J Opt Soc Am B 2012; 29(6): 1208-1217. DOI: 10.1364/JOSAB.29.001208.
  13. Weber MJ. Handbook of optical materials. CRC Press; 2003. ISBN: 0-8493-3512-4.
  14. Keldysh LV. Ionization in the field of a strong electromagnetic wave. Sov Phys JETP 1964; 20(5): 1307-1314.
  15. Li HH. Refractive index of alkali halides and its wavelength and temperature derivatives. J Phys Chem Ref Data 1976; 5(2): 329-528. DOI: 10.1063/1.555536.
  16. Levenson M. Feasibility of measuring the nonlinear index of refraction by third-order frequency mixing. IEEE J Quantum Electron 1974; 10(2): 110-115. DOI: 10.1109/jqe.1974.1145780.
  17. Yee K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag 1966; 14(3): 302-307. DOI: 10.1109/TAP.1966.1138693.
  18. Taflove A, Hagness SC. Computational electrodynamics: The finite-difference time-domain method. 3rd ed. Artech House Publishers; 2005. ISBN: 978-1-58053-832-9.
  19. Sullivan DM. Electromagnetic simulation using the FDTD method. The Institute of Electrical and Electronics Engineers; 2013. ISBN: 9781118459393.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20