(48-6) 08 * << * >> * Русский * English * Содержание * Все выпуски

Особенности фокусировки оптических вихрей при изменении высоты нечетных и четных зон рельефа субволновых элементов
Д.А. Савельев 1,2

Самарский национальный исследовательский университет имени академика С.П. Королёва,
443086, Россия, г. Самара, Московское шоссе, д. 34;
Институт систем обработки изображений, НИЦ «Курчатовский институт»,
443001, Россия, г. Самара, ул. Молодогвардейская, д. 151

  PDF, 4114 kB

DOI: 10.18287/2412-6179-CO-1531

Страницы: 868-877.

Аннотация:
В работе методом конечных разностей во временной области проведено моделирование распространения оптических вихрей с круговой, радиальной, азимутальной поляризацией на субволновых кольцевых решетках со стандартной и GRIN-подложками. Показано, что можно подобрать поляризацию лазерного излучения и параметры элемента таким образом, чтобы на оптической оси формировалась длинная оптическая игла (до 8,04λ при радиальной поляризации), узкое фокальное пятно (до 0,4λ при круговой поляризации), одиночные оптические ловушки и их наборы.

Ключевые слова:
оптические вихри, субволновые кольцевые решетки, GRIN, FDTD, оптическая ловушка, Meep.

Благодарности
Исследование выполнено за счет гранта Российского научного фонда № 24-22-00044, https://rscf.ru/project/24-22-00044/.

Цитирование:
Савельев, Д.А. Особенности фокусировки оптических вихрей при изменении высоты нечетных и четных зон рельефа субволновых элементов / Д.А. Савельев // Компьютерная оптика. – 2024. – Т. 48, № 6. – С. 868-877. – DOI: 10.18287/2412-6179-CO-1531.

Citation:
Savelyev DA. Features of focusing of optical vortices using subwavelength elements with varying height of odd and even relief zones. Computer Optics 2024; 48(6): 868-877. DOI: 10.18287/2412-6179-CO-1531.

References:

  1. Wang X, Tao P, Wang Q, Zhao R, Liu T, Hu Y, Hu Z, Wang Y, Wang J, Tang Y, Xu H, He X. Trends in photoresist materials for extreme ultraviolet lithography: A review. Materials Today 2023; 67: 299-319. DOI: 10.1016/j.mattod.2023.05.027.
  2. Sharma E, Rathi R, Misharwal J, Sinhmar B, Kumari S, Dalal J, Kumar A. Evolution in lithography techniques: microlithography to nanolithography. Nanomaterials 2022; 12(16): 2754. DOI: 10.3390/nano12162754.
  3. Manouras T, Argitis P. High sensitivity resists for EUV lithography: a review of material design strategies and performance results. Nanomaterials 2020; 10(8): 1593. DOI: 10.3390/nano10081593.
  4. Perveņecka J, Teterovskis J, Vembris A., Vı̄tols K, Tropiņš E, Vı̄ksna VT, Butikova J, Grūbe J. An innovative approach to photolithography for optical recording of high-resolution two-dimensional structures in a negative SU8 photoresist by activation of up-conversion luminescence in Yb3+ and Tm3+ doped NaYF4 nanoparticles. Nano-Struct Nano-Objects 2023; 33: 100932. DOI: 10.1016/j.nanoso.2022.100932.
  5. Van der Velden G, Fan D, Staufer U. Fabrication of a microfluidic device by using two-photon lithography on a positive photoresist. Micro Nano Eng 2020; 7: 100054. DOI: 10.1016/j.mne.2020.100054.
  6. Luo C, Xu C, Lv L, Li H, Huang X, Liu W. Review of recent advances in inorganic photoresists. RSC Advances 2020; 10(14): 8385-8395. DOI: 10.1039/C9RA08977B.
  7. Medvedskaya P, Lyatun I, Shevyrtalov S, Polikarpov M, Snigireva I, Yunkin V, Snigirev A. Diamond refractive micro-lenses for full-field X-ray imaging and microscopy produced with ion beam lithography. Opt Express 2020; 28(4): 4773-4785. DOI: 10.1364/OE.384647.
  8. Bharti A, Turchet A, Marmiroli B. X-ray lithography for nanofabrication: is there a future?. Front Nanotechnol 2022; 4: 835701. DOI: 10.3389/fnano.2022.835701.
  9. Liu W, Wang J, Xu X, Zhao C, Xu X, Weiss PS. Single-step dual-layer photolithography for tunable and scalable nanopatterning. Acs Nano 2021; 15(7): 12180-12188. DOI: 10.1021/acsnano.1c03703.
  10. Du L, Wang S, Zhang X, Du C, Zhao M, Li Y. Fabrication method of micro RF coaxial transmitter on metal substrate combining positive and negative photoresist processes. Microelectron Eng 2020; 228: 111329. DOI: 10.1016/j.mee.2020.111329.
  11. Wang Z, Yao X, An H, Wang Y, Chen J, Wang S, Guo X, Yu T, Zeng Y, Yang G, Li Y. Recent advances in organic-inorganic hybrid photoresists. J Microelectron Manuf 2021; 4: 21040101. DOI: 10.33079/jomm.21040101.
  12. Richardson KA, Kang M, Sisken L, Yadav A, Novak S, Lepicard A, Martin I, Francois-Saint-Cyr H, Schwarz CM, Mayer TS, Rivero-Baleine C, Yee AJ, Mingareev I. Advances in infrared gradient refractive index (GRIN) materials: a review. Opt Eng 2020; 59(11): 112602. DOI: 10.1117/1.OE.59.11.112602.
  13. Gómez-Correa JE, Padilla-Ortiz AL, Trevino JP, Jaimes-Nájera A, Lozano-Crisóstomo N, Cornejo-Rodriguez A, Chavez-Cerda S. Symmetric gradient-index media reconstruction. Opt Express 2023; 31(18): 29196-29212. DOI: 10.1364/OE.498649.
  14. Lippman DH, Kochan NS, Yang T, Schmidt GR, Bentley JL, Moore DT. Freeform gradient-index media: a new frontier in freeform optics. Opt Express 2021; 29(22): 36997-37012. DOI: 10.1364/OE.443427.
  15. Wei L, Li G, Song M, Wang CH, Zhang W. Determination of gradient index based on laser beam deflection by stochastic particle swarm optimization. Appl Phys B 2021; 127(9): 131. DOI: 10.1007/s00340-021-07676-9.
  16. Ohno H, Usui T. Neural network gradient-index mapping. OSA Continuum 2021; 4(10): 2543-2551. DOI: 10.1364/OSAC.437395.
  17. Gómez-Correa JE. Geometrical-light-propagation in non-normalized symmetric gradient-index media. Opt Express 2022; 30(19): 33896-33910. DOI: 10.1364/OE.465957.
  18. Ohno H. Symplectic ray tracing based on Hamiltonian optics in gradient-index media. J Opt Soc Am A 2020; 37(3): 411-416. DOI: 10.1364/JOSAA.378829.
  19. Ohno H, Usui T. Gradient-index dark hole based on conformal mapping with etendue conservation. Opt Express 2019; 27(13): 18493-18507. DOI: 10.1364/OE.27.018493.
  20. Savelyev DA, Karpeev SV. Development of 3D microstructures for the formation of a set of optical traps on the optical axis. Photonics 2023; 10(2): 117. DOI: 10.3390/photonics10020117.
  21. Luque-González JM, Halir R, Wangüemert-Pérez JG, de-Oliva-Rubio J, Schmid JH, Cheben P, Molina-Fernández Í, Ortega-Moñux A. An ultracompact GRIN-lens-based spot size converter using subwavelength grating metamaterials. Laser Photon Rev 2019; 13(11): 1900172. DOI: 10.1002/lpor.201900172.
  22. Lalanne P, Chavel P. Metalenses at visible wavelengths: past, present, perspectives. Laser Photon Rev 2017; 11(3): 1600295. DOI: 10.1002/lpor.201600295.
  23. Savelyev DA, Ustinov AV, Khonina SN, Kazanskiy NL. Layered lens with a linear dependence of the refractive index change. Proc SPIE 2016; 9807: 98070P. DOI: 10.1117/12.2234404.
  24. Baghel AK, Kulkarni SS, Nayak SK. Far-field wireless power transfer using GRIN lens metamaterial at GHz frequency. IEEE Microw Wirel Compon Lett 2019; 29(6): 424-426. DOI: 10.1109/LMWC.2019.2912056.
  25. Chien YF, Lin JY, Yeh PT, Hsu KJ, Tsai YH, Chen SK, Chu SW. Dual GRIN lens two-photon endoscopy for high-speed volumetric and deep brain imaging. Biomed Opt Express 2021; 12(1): 162-172. DOI: 10.1364/BOE.405738.
  26. Guo C, Urner T, Jia S. 3D light-field endoscopic imaging using a GRIN lens array. Appl Phys Lett 2020; 116(10): 101105. DOI: 10.1063/1.5143113.
  27. Porfirev AP, Kuchmizhak AA, Gurbatov SO, Juodkazis S, Khonina SN, Kulchin YuN. Phase singularities and optical vortices in photonics. Phys Usp 2022; 192(8): 841-866. DOI: 10.3367/UFNe.2021.07.039028.
  28. Rosen GFQ, Tamborenea PI, Kuhn T. Interplay between optical vortices and condensed matter. Rev Mod Phys 2022; 94(3): 035003. DOI: 10.1103/RevModPhys.94.035003.
  29. Savelyev D, Kazanskiy N. Near-field vortex beams diffraction on surface micro-defects and diffractive axicons for polarization state recognition. Sensors 2021; 21(6): 1973. DOI: 10.3390/s21061973.
  30. Andrews DL. Symmetry and quantum features in optical vortices. Symmetry 2021; 13(8): 1368. DOI: 10.3390/sym13081368.
  31. Brimis A, Makris KG, Papazoglou DG. Optical vortices shape optical tornados. Opt Express 2023; 31(17): 27582-27593. DOI: 10.1364/OE.495836.
  32. Khonina SN, Karpeev SV, Butt MA. Spatial-light-modulator-based multichannel data transmission by vortex beams of various orders. Sensors 2021; 21(9): 2988. DOI: 10.3390/s21092988.
  33. Khonina SN, Ustinov AV, Volotovskiy SG, Ivliev NA, Podlipnov VV. Influence of optical forces induced by par-axial vortex Gaussian beams on the formation of a microrelief on carbazole-containing azopolymer films. Appl Opt 2020; 59(29): 9185-9194. DOI: 10.1364/AO.398620.
  34. Savelyev DA. The investigation of the features of focusing vortex super-Gaussian beams with a variable-height diffractive axicon. Computer Optics 2021; 45(2): 214-221. DOI: 10.18287/2412-6179-CO-862.
  35. Kotlyar VV, Stafeev SS, Zaitsev VD, Telegin AM, Kozlova ES. Spin-orbital transformation in a tight focus of an optical vortex with circular polarization. Appl Sci 2023; 13(14): 8361. DOI: 10.3390/app13148361.
  36. Adams J, Agha I, Chong A. Spatiotemporal optical vortex reconnections of multi-vortices. Sci Rep 2024; 14(1): 5483. DOI: 10.1038/s41598-024-54216-4.
  37. Khonina SN. Vortex beams with high-order cylindrical polarization: features of focal distributions. Appl Phys B 2019; 125: 100. DOI: 10.1007/s00340-019-7212-1.
  38. Wang B, Liu W, Zhao M, Wang J, Zhang Y, Chen A, Guan F, Liu X, Shi L, Zi J. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat Photonics 2020; 14(10): 623-628. DOI: 10.1038/s41566-020-0658-1.
  39. Savelyev D, Degtyarev S. Features of the optical vortices diffraction on silicon ring gratings. Optical Memory and Neural Networks 2022; 31(1): 55-66. DOI: 10.3103/S1060992X22050095.
  40. Dong M, Zhao C, Cai Y, Yang Y. Partially coherent vortex beams: Fundamentals and applications. Sci China: Phys Mech Astron 2021; 64(2): 224201. DOI: 10.1007/s11433-020-1579-9.
  41. Shen Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M, Yuan X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci Appl 2019; 8(1): 1-29. DOI: 10.1038/s41377-019-0194-2.
  42. Savelyev DA. Features of a Gaussian beam near-field diffraction upon variations in the relief height of subwavelength silicon optical elements. Computer Optics 2023; 47(6): 938-947. DOI: 10.18287/2412-6179-CO-1402.
  43. Savelyev DA. The features of the optical traps formation using silicon ring gratings with variable height. Photonics 2023; 10(11): 1264. DOI: 10.3390/photonics10111264.
  44. Savelyev DA. Peculiarities of focusing circularly and radially polarized super-Gaussian beams using ring gratings with varying relief height. Computer Optics 2022; 46(4): 537-546. DOI: 10.18287/2412-6179-CO-1131.
  45. Sirenko AA, Marsik P, Bernhard C, Stanislavchuk TN, Kiryukhin V, Cheong SW. Terahertz vortex beam as a spectroscopic probe of magnetic excitations. Phys Rev Lett 2019; 122: 237401. DOI: 10.1103/PhysRevLett.122.237401.
  46. Barshak EV, Vikulin DV, Lapin BP, Alieva SS, Alexeyev CN, Yavorsky MA. Robust higher-order optical vortices for information transmission in twisted anisotropic optical fibers. J Opt 2021; 23(3): 035603. DOI: 10.1088/2040-8986/abda85.
  47. Jiménez N, Romero-García V, García-Raffi LM, Camarena F, Staliunas K. Sharp acoustic vortex focusing by Fresnel-spiral zone plates. Appl Phys Lett 2018; 112(20): 204101. DOI: 10.1063/1.5029424.
  48. Zhang H, Zeng J, Lu X, Wang Z, Zhao C, Cai Y. Review on fractional vortex beam. Nanophotonics 2021; 11: 241-273. DOI: 10.1515/nanoph-2021-0616.
  49. Yu S. Potentials and challenges of using orbital angular momentum communications in optical interconnects. Opt Express 2015; 23(3): 3075-3087. DOI: 10.1364/OE.23.003075.
  50. Lightman S, Hurvitz G, Gvishi R, Arie A. Miniature wide-spectrum mode sorter for vortex beams produced by 3D laser printing. Optica 2017; 4(6): 605-610. DOI: 10.1364/OPTICA.4.000605.
  51. Khonina SN, Butt MA, Kazanskiy NL. A review on reconfigurable metalenses revolutionizing flat optics. Adv Optical Mater 2023; 12(14): 2302794.  DOI: 10.1002/adom.202302794.
  52. Khonina SN, Kazanskiy NL, Khorin PA, Butt MA. Modern types of axicons: new functions and applications. Sensors 2021; 21(19): 6690. DOI: 10.3390/s21196690.
  53. Savelyev DA, Khonina SN. Characteristics of sharp focusing of vortex Laguerre-Gaussian beams. Computer Optics 2015; 39(5): 654-662. DOI: 10.18287/0134-2452-2015-39-5-654-662.
  54. Yang Z, Lin X, Zhang H, Ma X, Zou Y, Xu L, Xu Y, Jin L. Design of bottle beam based on dual-beam for trapping particles in air. Appl Opt 2019; 58(10): 2471-2480. DOI: 10.1364/AO.58.002471.
  55. Savelyev DA. The comparison of laser radiation focusing by diffractive axicons and annular gratings with variable height using high-performance computer systems. 2021 Photonics & Electromagnetics Research Symposium (PIERS) 2021: 2709-2716. DOI: 10.1109/PIERS53385.2021.9694860.
  56. Shi C, Xu Z, Nie Z, Xia Z, Dong B, Liu J. Sub-wavelength longitudinally polarized optical needle arrays generated with tightly focused radially polarized Gaussian beam. Opt Commun 2022; 505: 127506. DOI: 10.1016/j.optcom.2021.127506.
  57. Kazanskiy NL, Khonina SN. Nonparaxial effects in lensacon optical systems. Optoelectron, Instrum Data Process 2017; 53(5): 484-493. DOI: 10.3103/S8756699017050089.
  58. Hanson JC. Broadband rf phased array design with meep: Comparisons to array theory in two and three dimensions. Electronics 2021; 10(4): 415. DOI: 10.3390/electronics10040415.
  59. Khonina SN, Savelyev DA, Kazanskiy NL. Vortex phase elements as detectors of polarization state. Opt Express 2015; 23(14): 17845-17859. DOI: 10.1364/OE.23.017845.
  60. Gong Z, Pan YL, Videen G, Wang C. Optical trapping and manipulation of single particles in air: Principles, technical details, and applications. J Quant Spectrosc Radiat Transfer 2018; 214, 94-119. DOI: 10.1016/j.jqsrt.2018.04.027.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20