(48-6) 07 * << * >> * Русский * English * Содержание * Все выпуски

Векторный анализ интерференции парных компланарных пучков с линейной или круговой поляризацией
С.Н. Хонина 1,2, А.В. Устинов 1, А.П. Порфирьев 1,2

Институт систем обработки изображений, НИЦ «Курчатовский институт»,
443001, Россия, г. Самара, ул. Молодогвардейская, д. 151;
Самарский национальный исследовательский университет имени академика С.П. Королёва,
443086, Россия, г. Самара, Московское шоссе, д. 34

  PDF, 2295 kB

DOI: 10.18287/2412-6179-CO-1510

Страницы: 858-867.

Аннотация:
В работе с помощью формализма фокусировки Ричардса–Вольфа численно исследована многолучевая интерференция двух и четырёх световых пучков с линейной или круговой поляризацией с различной ортогональностью и ориентацией вектора поляризации. Показана возможность формирования световых полей с периодически повторяющейся структурой поляризации. В частности, установлено, что при фокусировке четырёх равноудалённых от оптической оси пучков с изменяющейся ориентацией линейной поляризации, имитирующей изменение вектора поляризации в одиночном радиально или азимутально поляризованном пучке, формируются периодические световые поля. Поляризационное распределение таких полей фактически представляет собой набор поляризационных сингулярностей, соответствующих радиально и азимутально поляризованным пучкам. Предложенный подход не требует изготовления сложных субволновых решёток, элементов на их основе или модового сложения световых полей за счёт дифракционных оптических элементов или пространственных модуляторов света. Сформированные световые поля позволяют существенно ускорить процесс лазерной обработки тонких плёнок светочувствительных материалов с целью создания массивов различных упорядоченных нано- и микроструктур.

Ключевые слова:
поляризация, многопучковая интерференция, круговая поляризация, линейная поляризация, формулы Ричардса–Вольфа.

Благодарности
Работа выполнена при поддержке Российского научного фонда (проект № 22-79-10007) в части численного моделирования, а также в рамках Государственного задания НИЦ «Курчатовский институт» в теоретической части.

Цитирование:
Хонина, С.Н. Векторный анализ интерференции парных компланарных пучков с линейной или круговой поляризацией / С.Н. Хонина, А.В. Устинов, А.П. Порфирьев // Компьютерная оптика. – 2024. – Т. 48, № 6. – С. 858-867. – DOI: 10.18287/2412-6179-CO-1510.

Citation:
Khonina SN, Ustinov AV, Porfirev AP. Vector analysis of the interference of paired coplanar beams with linear or circular polarization. Computer Optics 2024; 48(6): 858-867. DOI: DOI: 10.18287/2412-6179-CO-1510.

References:

  1. Forbes A. Structured light from lasers. Laser Photon Rev 2019; 13(11): 1900140. DOI: 10.1002/lpor.201900140.
  2. Fu P, Ni PN, Wu B, Pei XZ, Wang QH, Chen PP, Xu C, Kan Q, Chu WG, Xie YY. Metasurface enabled on-chip generation and manipulation of vector beams from vertical cavity surface-emitting lasers. Adv Mater 2023; 35(12): 2204286. DOI: 10.1002/adma.202204286.
  3. Skoulas E, Manousaki A, Fotakis C, Stratakis E. Biomimetic surface structuring using cylindrical vector femtosecond laser beams. Sci Rep 2017; 7(1): 45114. DOI: 10.1038/srep45114.
  4. Rosales-Guzmán C, Ndagano B, Forbes A. A review of complex vector light fields and their applications. J Opt 2018; 20(12): 123001. DOI: 10.1088/2040-8986/aaeb7d.
  5. Stafeev SS, Kotlyar VV, Nalimov AG, Kotlyar MV, O’Faolain L. Subwavelength gratings for polarization conversion and focusing of laser light. Photonics Nanostruct 2017; 27: 32-41. DOI: 10.1016/j.photonics.2017.09.001.
  6. Wen D, Crozier KB. Metasurfaces 2.0: Laser-integrated and with vector field control. APL Photonics 2021; 6(8): 080902. DOI: 10.1063/5.0057904.
  7. Khonina SN, Degtyarev SA, Ustinov AV, Porfirev AP. Metalenses for the generation of vector Lissajous beams with a complex Poynting vector density. Opt Express 2021; 29(12): 18634-18645. DOI: 10.1364/OE.428453.
  8. Maurer C, Jesacher A, Fürhapter S, Bernet S, Ritsch-Marte M. Tailoring of arbitrary optical vector beams. New J Phys 2007; 9: 78. DOI: 10.1088/1367-2630/9/3/078.
  9. Khonina SN, Porfirev AP. Harnessing of inhomogeneously polarized Hermite–Gaussian vector beams to manage the 3D spin angular momentum density distribution. Nanophotonics 2021; 11(4): 697-712. DOI: 10.1515/nanoph-2021-0418.
  10. Khonina SN, Karpeev SV. Grating-based optical scheme for the universal generation of inhomogeneously polarized laser beams. Appl Opt 2010; 49(10): 1734-1738. DOI: 10.1364/AO.49.001734.
  11. Khonina SN, Karpeev SV, Porfirev AP. Sector sandwich structure: an easy-to-manufacture way towards complex vector beam generation. Opt Express 2020; 28(19): 27628-27643. DOI: 10.1364/OE.398435.
  12. Uesugi Y, Miwa T, Kadoguchi N, Kozawa Y, Sato S. Multi-beam ultrafast laser processing of free-standing nanofilms. Appl Phys A 2023; 129(2): 101. DOI: 10.1007/s00339-022-06361-8.
  13. Yang Y, Ren YX, Chen M, Arita Y, Rosales-Guzmán C. Optical trapping with structured light: a review. Adv Photonics 2021; 3(3): 034001. DOI: 10.1117/1.AP.3.3.034001.
  14. Kim DY, Tripathy SK, Li L, Kumar J. Laser-induced holographic surface relief gratings on nonlinear optical polymer films. Appl Phys Lett 1995; 66: 1166-1168. DOI: 10.1063/1.113845.
  15. Yu F, Li P, Shen H, Mathur S, Lehr C-M, Bakowsky U, Mücklich F. Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface. Biomaterials 2005; 26(15): 2307-2312. DOI: 10.1016/j.biomaterials.2004.07.021.
  16. Lai ND, Liang WP, Lin JH, Hsu CC, Lin CH. Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique. Opt Express 2005; 13(23): 9605-9611. DOI: 10.1364/OPEX.13.009605.
  17. Xia D, Ku Z, Lee SC, Brueck SRJ. Nanostructures and functional materials fabricated by interferometric lithography. Adv Mater 2011; 23(2): 147-179. DOI: 10.1002/adma.201001856.
  18. Vala M, Homola J. Multiple beam interference lithography: A tool for rapid fabrication of plasmonic arrays of arbitrary shaped nanomotifs. Opt Express 2016; 24(14): 15656-15665. DOI: 10.1364/OE.24.015656.
  19. Ivliev NA, Podlipnov VV, Khonina SN, Loshmanskii KS, Prisakar AM, Abashkin VG, Meshalkin AYu, Akimova EA. Single- and double-beam optical formation of relief-phase diffraction microstructures in carbazole-containing azopolymer films. Opt Spectrosc 2021; 129(4): 400-405. DOI: 10.1134/S0030400X21040111.
  20. Porfirev AP, Khonina SN, Meshalkin A, Ivliev NA, Achimova E, Abashkin V, Prisacar A, Podlipnov VV. Two-step maskless fabrication of compound fork-shaped gratings in nanomultilayer structures based on chalcogenide glasses, Opt Lett 2021; 46(13): 3037-3040. DOI: 10.1364/OL.427335.
  21. Gorkhali SP, Cloutier SG, Crawford GP, Pelcovits RA. Stable polarization gratings recorded in azo-dye-doped liquid crystals. Appl Phys Lett 2006; 88(25): 251113. DOI: 10.1063/1.2214176.
  22. Wang D, Wang Z, Zhang Z, et al. Effects of polarization on four-beam laser interference lithography. Appl Phys Lett 2016; 102(8): 081903. DOI: 10.1063/1.4793752.
  23. Achimova E, Stronski A, Abaskin V, Meshalkin A, Paiuk A, Prisacar A, Oleksenko P, Triduh G. Direct surface relief formation on As2S3–Se nanomultilayers in dependence on polarization states of recording beams. Opt Mater 2015; 47: 566-572. DOI: 10.1016/j.optmat.2015.06.044.
  24. Meshalkin A, Losmanschii C, Prisacar A, Achimova E, Abashkin V, Pogrebnoi S, Macaev F. Carbazole-based azopolymers as media for polarization holographic recording. Adv Phys Res 2019; 1: 86-98.
  25. Porfirev AP, Khonina SN, Ivliev NA, Fomchenkov SA, Porfirev DP, Karpeev SV. Polarization-sensitive patterning of azopolymer thin films using multiple structured laser beams. Sensors 2023; 23: 112. DOI: 10.3390/s23010112.
  26. Porfirev AP, Khonina SN, Ivliev NA, Porfirev DP, Kazanskiy NL. Stacked polarizing elements for controlling parameters of surface relief gratings written in photosensitive materials. Sensors 2024; 24: 1166. DOI: 10.3390/s24041166.
  27. Stay JL, Gaylord TK. Three-beam-interference lithography: contrast and crystallography. Appl Opt 2008; 47(18): 3221-3230. DOI: 10.1364/AO.47.003221.
  28. He J, Fang X, Lin Y, Zhang X. Polarization control in flexible interference lithography for nano-patterning of different photonic structures with optimized contrast. Opt Express 2015; 23(9): 11518-11525. DOI: 10.1364/OE.23.011518.
  29. Miller DB, Jones A, McLeod RR. Contrast analysis in two-beam laser interference lithography. Appl Opt 2020; 59(18): 5399-5407. DOI: 10.1364/AO.393741.
  30. Peng F, Du J, Du J, Wang S, Yan W. Contrast analysis of polarization in three-beam interference lithography. Appl Sci 2021; 11: 4789. DOI: 10.3390/app11114789.
  31. Sekkat Z, Kawata S. Laser nanofabrication in photoresists and azopolymers. Laser Photon Rev 2014; 8(1): 1-26. DOI: 10.1002/lpor.201200081.
  32. Meier M, Romano V, Feurer T. Material processing with pulsed radially and azimuthally polarized laser radiation. Appl Phys A 2007; 86: 329-334. DOI: 10.1007/s00339-006-3784-9.
  33. Danilov PA, Saraeva IN, Kudryashov SI, Porfirev AP, Kuchmizhak AA, Zhizhchenko AYu, Rudenko AA, Umanskaya SF, Zayarny DA, Ionin AA, Khonina SN. Polarization-selective excitation of dye luminescence on a gold film by structured ultrashort laser pulses. JETP Lett 2018; 107(1): 15-18. DOI: 10.1134/S0021364018010034.
  34. Zhai Y, Cao L, Liu Y, Tan X. A review of polarization-sensitive materials for polarization holography. Materials 2020; 13(23): 5562. DOI: 10.3390/ma13235562.
  35. Porfirev A, Khonina S, Ivliev N, Meshalkin A, Achimova E, Forbes A. Writing and reading with the longitudinal component of light using carbazole-containing azopolymer thin films. Sci Rep 2022; 12: 3477. DOI: 10.1038/s41598-022-07440-9.
  36. Porfirev AP, Khonina SN, Ivliev NA, Porfirev DP. Laser processing of chalcogenide glasses using laser fields with a spatially varying polarization distribution. Opt Laser Technol 2023; 167: 109716. DOI: 10.1016/j.optlastec.2023.109716.
  37. Richards B, Wolf E. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proc R Soc Lond Ser A Math Phys Sci 1959; 253: 358-379. DOI: 10.1098/rspa.1959.0200.
  38. Khonina SN. Vortex beams with high-order cylindrical polarization: features of focal distributions. Appl Phys B 2019; 125: 100. DOI: 10.1007/s00340-019-7212-1.
  39. Meshalkin A, Robu S, Achimova E, Prisacar A, Shepel D, Abaskin V, Triduh G. Direct photoinduced surface relief formation in carbazole-based azopolymer using polarization holographic recording. J Optoelectron Adv M 2016; 18: 763-768.
  40. Ivliev NA, Khonina SN, Podlipnov VV, Karpeev SV. Holographic writing of forked diffraction gratings on the surface of a chalcogenide glass semiconductor. Photonics 2023; 10(2): 125. DOI: 10.3390/photonics10020125.
  41. Kulikovska O, Gharagozloo-Hubmann K, Stumpe J, Huey BD, Bliznyuk VN. Formation of surface relief grating in polymers with pendant azobenzene chromophores as studied by AFM/UFM. Nanotechnology 2012; 23: 485309. DOI: 10.1088/0957-4484/23/48/485309.
  42. Zhai Y, Cao L, Liu Y, Tan X. A review of polarization-sensitive materials for polarization holography. Materials 2020; 13: 5562. DOI: 10.3390/ma13235562.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20