(49-1) 15 * << * >> * Русский * English * Содержание * Все выпуски
  
Renewed empirical formulas for estimating Weibull distribution parameters
 D.G. Asatryan 1,2
 1 Institute for Informatics and Automation Problems of NAS RA,
 0014, Armenia, Yerevan, P. Sevaki street, 1;
     2 Russian-Armenian University,
     0052, Armenia, Yerevan, O. Emini street, 123
 
 PDF, 626 kB
  PDF, 626 kB
DOI: 10.18287/2412-6179-CO-1475
Страницы: 121-124.
Язык статьи: English.
 
Аннотация:
The empirical formulas proposed in the literature for estimating the  parameters of a two-parameter Weibull distribution, obtained using the  equations of the moment method, are considered. It is noted that the formulas  used to estimate the shape parameter take the form of various types of  dependences on the coefficient of variation of the distribution. By modeling  the empirical formulas selected for analysis, a comparative analysis of their  errors relative to accurate numerical solutions of the moment method equations  was carried out. A renewed empirical formula for the shape parameter is  proposed. An approach to estimating the scale parameter is proposed, in which  the empirical formula of the latter is reduced to the product of the standard deviation  of the distribution by a power function of the coefficient of variation with an  exponent equal to – 1.027. The results of applying the updated  empirical formulas to numerical data obtained by modeling a random sample from  the Weibull distribution are presented. It is shown that the accuracy of the  proposed empirical formulas is quite high.
Ключевые слова:
Weibull distribution, shape parameter, scale parameter, coefficient of  variation, empirical formula, accuracy.
Citation:
Asatryan DG. Renewed empirical formulas of Weibull distribution parameters estimates. Computer Optics 2025; 49(1): 121-124. DOI: 10.18287/2412-6179-CO-1475.
References:
  - Vega-Zuñiga S,  Rueda-Bayona JG, Ospino-Castro A. Evaluation of eleven numerical methods for  determining Weibull parameters for wind energy generation in the Caribbean  region of Colombia.  Math Model Eng Probl 2022; 9(1): 194-199. DOI: 10.18280/mmep.090124.
 
- Kapen PT, Gouajio MJ,  Yemélé D. Analysis and efficient comparison of ten numerical methods  inestimating Weibull parameters for wind energy potential: Application to the  city of Bafoussam, Cameroon. Renew Energy 2020; 159:  1188-1198. DOI: 10.1016/j.renene.2020.05.185.
 
- Guenoukpati  A, Salami AA, Kodjo MK, Napo K. Estimating Weibull parameters for wind energy  applications using seven numerical methods: Casestudies of three coastal sites  in West Africa. Int J Renew Energy Dev 2020; 9(2): 217-226. DOI:  10.14710/ijred.9.2.217-226.
 
- Justus  CG, Hargraves WR, Mikhail A, Graber D. Methods for estimating wind speed  frequency distributions. J Appl Meteorol Clim 1978; 17(3): 350-353. DOI:  10.1175/1520-0450(1978)017<0350:MFEWSF>2.0.CO;2.
 
- Ramírez  PJ, Carta A. Influence of the data sampling interval in the estimation of  parameters of the Weibull wind speed probability density distribution a case  study. Energy Conv Manag 2005; 46: 2419-2438. DOI:  10.1016/J.ENCONMAN.2004.11.004.
 
- Mohammadi  K, Mostafaeipour A. Using different methods for comprehensive study of wind  turbine utilization in Zarrineh,   Iran. Energy  Conv Manag 2013; 65: 463-470. DOI: 10.1016/J.ENCONMAN.2012.09.004.
 
- Costa  Rocha PA, Sousa RC, Andrade CF, Silva MEV. Comparison of seven numerical  methods for determining Weibull parameters for wind energy generation in the  northeast region of Brazil.  Appl Energy 2012; 89: 395-400. DOI: 10.1016/j.apenergy.2011.08.003.
 
- Indhumathy  D, Seshaiah CV, Sukkiramathi K. Estimation of Weibull parameters for wind speed  calculation at Kanyakumari in India.  Int J Innov Res Sci Eng Technol 2014; 3(1): 8341-8345.
 
- Mohammadi  K, Alavi O, Mostafaeipour A, Goudarzi N, Jalilvand M. Assessing different  parameters estimation methods of Weibull distribution to compute wind power  density. Energy Conv Manag 2016; 108: 322-335. DOI:  10.1016/j.enconman.2015.11.015.
 
- Kelly  M, Troen I, Jørgensen HE. Weibull-k revisited: "Tall" profiles and  height variation of wind statistics. Boundary-Layer Meteorol 2014; 152(1):  107-124. DOI: 10.1007/s10546-014-9915-5.
 
- Robinson  EY. Estimating Weibull parameters for materials. JPL Tech Memo 33-580. Pasadena, CA,   USA: Jet Propulsion  Lab; 1972. 62 p.
 
- Kanji  O. A simple estimation method of Weibull modulus and verification with strength  data. Appl Sci 2019; 9: 1575. DOI: 10.3390/app9081575.
 
- Azad  AK, Rasul MG, Alam MM, Ameer Uddin SM, Sukanta Kumar M. Analysis of wind energy  conversion system using Weibull distribution. Procedia Eng 2014; 90: 725-732.  DOI: 10.1016/j.proeng.2014.11.803.
 
- Chang  TP. Performance comparison of six numerical methods in estimating Weibull  parameters for wind energy application. Appl Energy 2011; 88(1): 272-282. DOI:  10.1016/j.apenergy.2010.06.018.
 
- Abramowitz  M, Stegun IA, eds. Handbook  of mathematical functions with formulas, graphs and mathematical tables.  National Bureau of Standards; 1972. 1060 p.
 
- Asatryan  DG. Comparative study of three approaches for estimating the Weibull  distribution parameters. Vestnik RAU 2018; 2: 5-16. 
- Asatryan DG. Gradient-based technique for image  structural analysis and applications. Computer Optics 2019; 43(2): 245-250.  DOI: 10.18287/2412-6179-2019-43-2-245-250.
  
  © 2009, IPSI RAS
    Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7  (846)  242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический  редактор), факс: +7 (846) 332-56-20